电动汽车集群并网的分布式鲁棒优化调度matlab

简介: 电动汽车集群并网的分布式鲁棒优化调度matlab

1 简介

电动汽车的数据模型种类繁多,但是用到比较高阶数学方法的并不多,本次分享的程序是下图所示的文章。

采用分布鲁棒优化模型,用到鲁棒对等转换,并采用ADMM算法进行求解,程序和文章方法一致,具有较好的参考价值。

2 关键知识点

2.1 三类电动汽车模型

根据文章所述,三类电动汽车模型分别如下所示:

对应程序代码如下(第二类电动汽车):

con1=[];
for i=1:sumA1n2
       for t=1:T
     k=k+1;
    if t==1
    con1=[con1,x_socu1(i,t)==u1soc(i)+yita*x_pju1(i,t)/El];%soc约束
    con1=[con1,x_pju1(i,t)==pcr*timeu1(i,t)];%充电功率约束
    else
    con1=[con1,x_socu1(i,t)==x_socu1(i,t-1)+yita*x_pju1(i,t)/El];   %soc约束
        con1=[con1,sum(lind(k,:))==1,
        implies(lind(k,1),[x_socu1(i,t-1)>=Scr,0<=x_pju1(i,t)<=pcr*timeu1(i,t)]);%soc大于0.4时充电功率约束
        implies(lind(k,2),[x_socu1(i,t-1)<=Scr,x_pju1(i,t)==pcr*timeu1(i,t)])];%soc小于0.4时充电功率约束
    end
 
% con1=[con1,0<=x_pju1(i,t)<=pcr*timeu1(i,t)];
    end
end
for i=1:u1sum20
    con1=[con1,Slex<=x_socu1(i,24)<=1];%离网soc约束
end
con1=[con1,0<=x_socu1<=1];

2.2 发电机启停约束

发电机启停时间约束是编程的一个难点,具体约束表达形式列写在下面,详细与原理可以参见视频讲解部分。

Horizon = size(x,2);
C = [];
for k = 2:size(x,2)
    for unit = 1:size(x,1)
        % indicator 代表机组启停动作
        indicator = x(unit,k)-x(unit,k-1);
        range = k:min(Horizon,k+minup(unit)-1);%约束状态,状态维持不变,开关机至少保持时间范围
        % Constraints will be redundant unless indicator = 1
        affected = x(unit,range);
        if strcmp(class(affected),'sdpvar')
        % 开关机状态约束,只要开机,必然维持最小运转时间
            C = [C, affected >= indicator];
        end
    end
end

2.3 ADMM算法迭代部分

迭代部分是程序运行的灵魂所在,但是对于模块化编程,这部分确实不好展示,就把模块化代码列在此处,详细信息可以下载程序源码了解。

for i=1:10%循环次数,次数越多越收敛,但是运算时间就长
    [PDN,x_pd1,x_pd2,x_pv1,x_pv2,x_pw1,x_pw2]=mp(PAjr,lamr,P2j1,P3j1,P2j2,P3j2,P2j3,P3j3,P2j4,P3j4);%主问题
    [P1j1,P2j1,P3j1,PA1t,x_pjd1,x_pju1,x_pjh1,x_socd1,x_socu1,x_soch1]=eva1(PDN,lamr,A1n1,A1n2,A1n3);%子问题1
 
   [P1j2,P2j2,P3j2,PA2t,x_pjd2,x_pju2,x_pjh2,x_socd2,x_socu2,x_soch2]=eva2(PDN,lamr,A2n1,A2n2,A2n3);%子问题2
% 
    [P1j3,P2j3,P3j3,PA3t,x_pjd3,x_pju3,x_pjh3,x_socd3,x_socu3,x_soch3]=eva3(PDN,lamr,A3n1,A3n2,A3n3);%子问题3
    
    [P1j4,P2j4,P3j4,PA4t,x_pjd4,x_pju4,x_pjh4,x_socd4,x_socu4,x_soch4]=eva4(PDN,lamr,A4n1,A4n2,A4n3);%子问题4
        
    PAjr=[P1j1+P2j1+P3j1;P1j2+P2j2+P3j2;P1j3+P2j3+P3j3;P1j4+P2j4+P3j4];
    
    lamr=lamr+pho.*(PDN-PAjr);
    
    slp(i)=(sum(sum((PDN-PAjr).*(PDN-PAjr))))^0.5;
end

3 程序结果

视频讲解

电动汽车集群并网的分布鲁棒优化模型matlab 

相关文章
|
4月前
|
资源调度 Java 调度
Spring Cloud Alibaba 集成分布式定时任务调度功能
定时任务在企业应用中至关重要,常用于异步数据处理、自动化运维等场景。在单体应用中,利用Java的`java.util.Timer`或Spring的`@Scheduled`即可轻松实现。然而,进入微服务架构后,任务可能因多节点并发执行而重复。Spring Cloud Alibaba为此发布了Scheduling模块,提供轻量级、高可用的分布式定时任务解决方案,支持防重复执行、分片运行等功能,并可通过`spring-cloud-starter-alibaba-schedulerx`快速集成。用户可选择基于阿里云SchedulerX托管服务或采用本地开源方案(如ShedLock)
144 1
|
20天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
53 4
|
1月前
|
存储 NoSQL Java
Java调度任务如何使用分布式锁保证相同任务在一个周期里只执行一次?
【10月更文挑战第29天】Java调度任务如何使用分布式锁保证相同任务在一个周期里只执行一次?
94 1
|
2月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
2月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
2月前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
146 0
|
4月前
|
存储 缓存 负载均衡
【PolarDB-X 技术揭秘】Lizard B+tree:揭秘分布式数据库索引优化的终极奥秘!
【8月更文挑战第25天】PolarDB-X是阿里云的一款分布式数据库产品,其核心组件Lizard B+tree针对分布式环境优化,解决了传统B+tree面临的数据分片与跨节点查询等问题。Lizard B+tree通过一致性哈希实现数据分片,确保分布式一致性;智能分区实现了负载均衡;高效的搜索算法与缓存机制降低了查询延迟;副本机制确保了系统的高可用性。此外,PolarDB-X通过自适应分支因子、缓存优化、异步写入、数据压缩和智能分片等策略进一步提升了Lizard B+tree的性能,使其能够在分布式环境下提供高性能的索引服务。这些优化不仅提高了查询速度,还确保了系统的稳定性和可靠性。
100 5
|
4月前
|
机器学习/深度学习 人工智能 负载均衡
【AI大模型】分布式训练:深入探索与实践优化
在人工智能的浩瀚宇宙中,AI大模型以其惊人的性能和广泛的应用前景,正引领着技术创新的浪潮。然而,随着模型参数的指数级增长,传统的单机训练方式已难以满足需求。分布式训练作为应对这一挑战的关键技术,正逐渐成为AI研发中的标配。
212 5
|
4月前
|
机器学习/深度学习 资源调度 PyTorch
面向大规模分布式训练的资源调度与优化策略
【8月更文第15天】随着深度学习模型的复杂度不断提高,对计算资源的需求也日益增长。为了加速训练过程并降低运行成本,高效的资源调度和优化策略变得至关重要。本文将探讨在大规模分布式训练场景下如何有效地进行资源调度,并通过具体的代码示例来展示这些策略的实际应用。
501 1
|
4月前
|
C# UED 定位技术
WPF控件大全:初学者必读,掌握控件使用技巧,让你的应用程序更上一层楼!
【8月更文挑战第31天】在WPF应用程序开发中,控件是实现用户界面交互的关键元素。WPF提供了丰富的控件库,包括基础控件(如`Button`、`TextBox`)、布局控件(如`StackPanel`、`Grid`)、数据绑定控件(如`ListBox`、`DataGrid`)等。本文将介绍这些控件的基本分类及使用技巧,并通过示例代码展示如何在项目中应用。合理选择控件并利用布局控件和数据绑定功能,可以提升用户体验和程序性能。
84 0