数据分享|WEKA关联规则挖掘Apriori算法在学生就业数据中的应用

简介: 数据分享|WEKA关联规则挖掘Apriori算法在学生就业数据中的应用

关联规则挖掘作为数据挖掘的一个重要分支,对于发现数据之间的潜在关联和规律具有重要意义。在教育领域,学生就业数据是一类重要的数据资源,通过关联规则挖掘可以揭示学生就业相关的规律和影响因素。本文旨在探讨WEKA关联规则挖掘Apriori算法在学生就业数据中的应用,以期为提高学生就业率和优化学生培养方案提供参考点击文末“阅读原文”获取完整代码数据

相关视频

image.png

本文首先介绍了关联规则挖掘的基本概念和方法,包括Apriori算法的原理、优势和适用场景。接着,本文详细阐述了WEKA数据挖掘软件的功能和特点,以及如何利用WEKA实现Apriori算法在学生就业数据中的具体应用。通过分析,本文发现Apriori算法可以有效地发现学生就业数据中的关联规则,揭示学生就业相关的规律和影响因素。

本文的研究成果不仅有助于提高学生就业率和优化学生培养方案,还可以为教育管理部门提供科学依据和决策支持。同时,本文的研究方法也可以为其他领域的数据挖掘应用提供参考和借鉴。

Weka

Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。

af5a52a02780bca976c6380d86d5458d.png

数据

数据使用的是学生数据查看文末了解数据免费获取方式

部分数据如下图所示:

c02a29399025ee440784c72f6e97c837.png

数据建模

数据预处理

466f68907f4e3824c9d5c0f926de9459.png

指标选取

本次分析一共选取了13个指标427个样本,分别是:

             毕业年份

             性别

             生源所在地

             政治面貌

             民族

             实习经历

             平均成绩  

             平均学分绩    

             加权学分成绩    

             名次

             毕业去向

             就业形式

             单位所在地。

数据审核

84811f3b001c71c2da8f1d13ba161a67.png

由上表,可得:本次分析的数据都是有效的,不存在缺失值。


点击标题查阅往期内容


数据分享|Weka数据挖掘Apriori关联规则算法分析用户网购数据



左右滑动查看更多

8c93d280e0e947f0a98a41f7580b0d06.png

描述性统计量

15fda625e49877bd46869d0ad2cbe8e4.png 3cdfc8b71518d8eac0ca28df1fcff63d.png

31e09a9f3e0743beb8d4f5eae371ab6d.png 895833d24eb379e33c35daaa0eb333c0.png

d888de5290f8107741fcba7847df226a.png e017de8f9fafcda15a9eb599e907a9c7.png

f78c314f1ec46db16adf5d79cd434c98.png

73b08ade63b86637d06345fe5968f370.png 3b10a957d629cf1422bb8984ad42f954.png

4b8a0763713b30c668387f824518f6de.png

由上表,可得各个变量的均值、中值、最大值和最小值。可以看出这8个连续性变量不存在量纲上的差异,因此在后面的分析中,不需要进行标准化处理。

数据预处理:

419b51bd292c61605a65eb4db5ef7448.png

在进行关联规则挖掘之前,首先对属性进行离散化处理,将数值型变量转化成分类变量。

模型的实际应用

研究数据说明

 本文分别用Apriori算法对数据进行处理挖掘,具体结果如下所示。

(1)Apriori算法

虽然 Apriori 算法可以直接挖掘生成表中的交易数据集,但是为了关联挖掘其他算法的需要先把交易数据集转换成分析数据集,构建的算法设置图如图所示。

参数设置

通过格式转换, 设最低条件支持度为15%,最小规则置信度为30%,最大前项数为5,选择专家模式,挖掘出最有价值的10条关联规则,如图 所示。生成的10条规则如下所示:

c7993f25e838b2cc25a87c1a147d2db3.png

762e22cfe1f0e819a7d40806aaa23337.png

分析及建议: 通过图可以清晰的看到有实习经历的汉族学生有较大的概率获得就业协议。说明实习经历是影响学生是否就业的重要因素。同时,可以看到签订就业协议的学生大多数的毕业去向是派遣。从政治面貌来看,为共青团员的学生具有更大的概率能签订就业协议。从性别来看,大部分强关联规则中出现的性别为男。

结论

利用WEKA软件,通过分析频繁项集及关联规则生成的过程,采用Apriori算法对数据分别进行了解析挖掘,针对挖掘结果提出了相应的建议,对学生的就业准备和就业策略有着一定的现实的意义。


相关文章
|
1月前
|
存储 监控 JavaScript
基于布隆过滤器的 Node.js 算法在局域网电脑桌面监控设备快速校验中的应用研究
本文探讨了布隆过滤器在局域网电脑桌面监控中的应用,分析其高效空间利用率、快速查询性能及动态扩容优势,并设计了基于MAC地址的校验模型,提供Node.js实现代码,适用于设备准入控制与重复数据过滤场景。
70 0
|
12天前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
56 7
|
12天前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
48 0
粒子群算法模型深度解析与实战应用
|
12天前
|
机器学习/深度学习 算法 安全
小场景大市场:猫狗识别算法在宠物智能设备中的应用
将猫狗识别算法应用于宠物智能设备,是AIoT领域的重要垂直场景。本文从核心技术、应用场景、挑战与趋势四个方面,全面解析这一融合算法、硬件与用户体验的系统工程。
|
2月前
|
机器学习/深度学习 人工智能 算法
AI-Compass 强化学习模块:理论到实战完整RL技术生态,涵盖10+主流框架、多智能体算法、游戏AI与金融量化应用
AI-Compass 强化学习模块:理论到实战完整RL技术生态,涵盖10+主流框架、多智能体算法、游戏AI与金融量化应用
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
452 3
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
70 1
|
1月前
|
算法 数据可视化
matlab版本粒子群算法(PSO)在路径规划中的应用
matlab版本粒子群算法(PSO)在路径规划中的应用
|
2月前
|
存储 监控 算法
公司员工泄密防护体系中跳表数据结构及其 Go 语言算法的应用研究
在数字化办公中,企业面临员工泄密风险。本文探讨使用跳表(Skip List)数据结构优化泄密防护系统,提升敏感数据监测效率。跳表以其高效的动态数据处理能力,为企业信息安全管理提供了可靠技术支持。
54 0

热门文章

最新文章