数据分享|WEKA关联规则挖掘Apriori算法在学生就业数据中的应用

简介: 数据分享|WEKA关联规则挖掘Apriori算法在学生就业数据中的应用

关联规则挖掘作为数据挖掘的一个重要分支,对于发现数据之间的潜在关联和规律具有重要意义。在教育领域,学生就业数据是一类重要的数据资源,通过关联规则挖掘可以揭示学生就业相关的规律和影响因素。本文旨在探讨WEKA关联规则挖掘Apriori算法在学生就业数据中的应用,以期为提高学生就业率和优化学生培养方案提供参考点击文末“阅读原文”获取完整代码数据

相关视频

image.png

本文首先介绍了关联规则挖掘的基本概念和方法,包括Apriori算法的原理、优势和适用场景。接着,本文详细阐述了WEKA数据挖掘软件的功能和特点,以及如何利用WEKA实现Apriori算法在学生就业数据中的具体应用。通过分析,本文发现Apriori算法可以有效地发现学生就业数据中的关联规则,揭示学生就业相关的规律和影响因素。

本文的研究成果不仅有助于提高学生就业率和优化学生培养方案,还可以为教育管理部门提供科学依据和决策支持。同时,本文的研究方法也可以为其他领域的数据挖掘应用提供参考和借鉴。

Weka

Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。

af5a52a02780bca976c6380d86d5458d.png

数据

数据使用的是学生数据查看文末了解数据免费获取方式

部分数据如下图所示:

c02a29399025ee440784c72f6e97c837.png

数据建模

数据预处理

466f68907f4e3824c9d5c0f926de9459.png

指标选取

本次分析一共选取了13个指标427个样本,分别是:

             毕业年份

             性别

             生源所在地

             政治面貌

             民族

             实习经历

             平均成绩  

             平均学分绩    

             加权学分成绩    

             名次

             毕业去向

             就业形式

             单位所在地。

数据审核

84811f3b001c71c2da8f1d13ba161a67.png

由上表,可得:本次分析的数据都是有效的,不存在缺失值。


点击标题查阅往期内容


数据分享|Weka数据挖掘Apriori关联规则算法分析用户网购数据



左右滑动查看更多

8c93d280e0e947f0a98a41f7580b0d06.png

描述性统计量

15fda625e49877bd46869d0ad2cbe8e4.png 3cdfc8b71518d8eac0ca28df1fcff63d.png

31e09a9f3e0743beb8d4f5eae371ab6d.png 895833d24eb379e33c35daaa0eb333c0.png

d888de5290f8107741fcba7847df226a.png e017de8f9fafcda15a9eb599e907a9c7.png

f78c314f1ec46db16adf5d79cd434c98.png

73b08ade63b86637d06345fe5968f370.png 3b10a957d629cf1422bb8984ad42f954.png

4b8a0763713b30c668387f824518f6de.png

由上表,可得各个变量的均值、中值、最大值和最小值。可以看出这8个连续性变量不存在量纲上的差异,因此在后面的分析中,不需要进行标准化处理。

数据预处理:

419b51bd292c61605a65eb4db5ef7448.png

在进行关联规则挖掘之前,首先对属性进行离散化处理,将数值型变量转化成分类变量。

模型的实际应用

研究数据说明

 本文分别用Apriori算法对数据进行处理挖掘,具体结果如下所示。

(1)Apriori算法

虽然 Apriori 算法可以直接挖掘生成表中的交易数据集,但是为了关联挖掘其他算法的需要先把交易数据集转换成分析数据集,构建的算法设置图如图所示。

参数设置

通过格式转换, 设最低条件支持度为15%,最小规则置信度为30%,最大前项数为5,选择专家模式,挖掘出最有价值的10条关联规则,如图 所示。生成的10条规则如下所示:

c7993f25e838b2cc25a87c1a147d2db3.png

762e22cfe1f0e819a7d40806aaa23337.png

分析及建议: 通过图可以清晰的看到有实习经历的汉族学生有较大的概率获得就业协议。说明实习经历是影响学生是否就业的重要因素。同时,可以看到签订就业协议的学生大多数的毕业去向是派遣。从政治面貌来看,为共青团员的学生具有更大的概率能签订就业协议。从性别来看,大部分强关联规则中出现的性别为男。

结论

利用WEKA软件,通过分析频繁项集及关联规则生成的过程,采用Apriori算法对数据分别进行了解析挖掘,针对挖掘结果提出了相应的建议,对学生的就业准备和就业策略有着一定的现实的意义。


相关文章
|
3月前
|
算法 前端开发 机器人
一文了解分而治之和动态规则算法在前端中的应用
该文章详细介绍了分而治之策略和动态规划算法在前端开发中的应用,并通过具体的例子和LeetCode题目解析来说明这两种算法的特点及使用场景。
一文了解分而治之和动态规则算法在前端中的应用
|
3月前
|
存储 算法 大数据
Apriori算法和Eclat算法差异
Apriori算法和Eclat算法差异
|
4月前
|
数据可视化 算法 前端开发
基于python flask+pyecharts实现的中药数据可视化大屏,实现基于Apriori算法的药品功效关系的关联规则
本文介绍了一个基于Python Flask和Pyecharts实现的中药数据可视化大屏,该系统应用Apriori算法挖掘中药药材与功效之间的关联规则,为中医药学研究提供了数据支持和可视化分析工具。
145 2
|
5月前
|
存储 算法 大数据
Apriori算法和Eclat算法在性能上有哪些主要的差异
Apriori算法和Eclat算法在性能上有哪些主要的差异
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
23天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
19天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
下一篇
DataWorks