Python用PyMC贝叶斯GLM广义线性模型、NUTS采样器拟合、后验分布可视化

简介: Python用PyMC贝叶斯GLM广义线性模型、NUTS采样器拟合、后验分布可视化

全文链接:https://tecdat.cn/?p=33436


尽管贝叶斯方法相对于频率主义方法的理论优势已经在其他地方进行了详细讨论,但其更广泛采用的主要障碍是“可用性”。而使用贝叶斯方法,客户可以按照自己认为合适的方式定义模型点击文末“阅读原文”获取完整代码数据


线性回归

在此示例中,我们将帮助客户从最简单的 GLM – 线性回归开始。一般来说,频率论者对线性回归的看法如下:

image.png

然后,我们可以使用普通最小二乘法(OLS)或最大似然法来找到最佳拟合。

概率重构

贝叶斯主义者对世界采取概率观,并用概率分布来表达这个模型。我们上面的线性回归可以重新表述为:

image.png

换句话说,我们将Y其视为一个随机变量(或随机向量),其中每个元素(数据点)都根据正态分布分布。此正态分布的均值由具有方差sigma的线性预测变量提供。

PyMC 中的贝叶斯 GLM

要开始在 PyMC 中构建 GLM,让我们首先导入所需的模块。

print(f"Running on PyMC v{pm.__version__}")

image.png

az.style.use("arviz-darkgrid")

数据

本质上,我们正在创建一条由截距和斜率定义的回归线,并通过从均值设置为回归线的正态采样来添加数据点。

y = true_regression_line + rng.normal(scale=0.5, size=size)
data = pd.DataFrame(dict(x=x, y=y))
plt.legend(loc=0);

image.png

点击标题查阅往期内容


R语言用贝叶斯线性回归、贝叶斯模型平均 (BMA)来预测工人工资


01

02

03

04

估计模型

让我们将贝叶斯线性回归模型拟合到此数据。

# 定义似然函数
    likelihood = Normal("y", mu=intercept + slope * x, sigma=sigma, observed=y)
    # 使用NUTS采样推断
    idata = sample(3000)

image.png

image.png

对于了解概率编程的人来说,这应该是相当可读的。

import bambi as bmb

image.png

image.png

idata = model.fit(draws=3000)

image.png

要短得多,但这段代码与之前的规范完全相同。

分析模型

贝叶斯推理不仅给了我们一条最佳拟合线(就像最大似然那样),而是给出了合理参数的整个后验分布。让我们绘制参数的后验分布和我们绘制的单个样本。

az.plot_trace(idata, figsize=(10, 7));

image.png

左侧显示了我们的边缘后验 – 对于 x 轴上的每个参数值,我们在 y 轴上得到一个概率,告诉我们该参数值的可能性。

首先,各个参数(左侧)的采样链看起来均匀且平稳(没有大的漂移或其他奇怪的模式)。

其次,每个变量的最大后验估计值(左侧分布中的峰值)非常接近用于生成数据的真实参数(x是回归系数,sigma是我们正态的标准差)。

因此,在 GLM 中,我们不仅有一条最佳拟合回归线,而且有许多。后验预测图从后验图(截距和斜率)中获取多个样本,并为每个样本绘制一条回归线。我们可以直接使用后验样本手动生成这些回归线。

idata.posterior["y_model"] = idata.posterior["Intercept"] + idata.posterior["x"] * xr.DataArray(x)
_, ax = plt.subplots(figsize=(7, 7))
az.plot_lm(idata=idata, y="y", num_samples=100, axes=ax, y_model="y_model")
ax.set_title("Posterior predictive regression lines")
ax.set_xlabel("x");

image.png

image.png

我们估计的回归线与真正的回归线非常相似。但是由于我们只有有限的数据,我们的估计存在不确定性,这里用线的可变性来表示。

总结

  • 可用性目前是更广泛采用贝叶斯统计的巨大障碍。
  • Bambi允许使用从 R 借用的便捷语法进行 GLM 规范。然后可以使用pymc 进行推理。
  • 后验预测图使我们能够评估拟合度和其中的不确定性。

延伸阅读

有关其他背景信息,以下是一些关于贝叶斯统计的好资源:

  • 约翰·克鲁施克(John Kruschke)的优秀著作《做贝叶斯数据分析》。

版本信息:

%load_ext watermark
%watermark -n -u -v -iv -w -p pytensor
Python implementation: CPython
Python version       : 3.11.4
IPython version      : 8.14.0
pytensor: 2.14.2
pymc      : 5.7.2+0.gd59a960f.dirty
bambi     : 0.12.0
arviz     : 0.16.1
xarray    : 2023.7.0
matplotlib: 3.7.2
numpy     : 1.25.2
sys       : 3.11.4 | packaged by conda-forge | (main, Jun 10 2023, 18:08:17) [GCC 12.2.0]
pandas    : 2.0.3
Watermark: 2.4.3
相关文章
|
1天前
|
数据可视化 数据挖掘 Python
【Python DataFrame专栏】DataFrame的可视化探索:使用matplotlib和seaborn
【5月更文挑战第20天】本文介绍了使用Python的pandas、matplotlib和seaborn库进行数据可视化的步骤,包括创建示例数据集、绘制折线图、柱状图、散点图、热力图、箱线图、小提琴图和饼图。这些图表有助于直观理解数据分布、关系和趋势,适用于数据分析中的探索性研究。
【Python DataFrame专栏】DataFrame的可视化探索:使用matplotlib和seaborn
|
6天前
|
数据采集 数据可视化 数据挖掘
如何利用Python中的Pandas库进行数据分析和可视化
Python的Pandas库是一种功能强大的工具,可以用于数据分析和处理。本文将介绍如何使用Pandas库进行数据分析和可视化,包括数据导入、清洗、转换以及基本的统计分析和图表绘制。通过学习本文,读者将能够掌握利用Python中的Pandas库进行高效数据处理和可视化的技能。
|
6天前
|
JSON 数据可视化 Shell
数据结构可视化 Graphviz在Python中的使用 [树的可视化]
数据结构可视化 Graphviz在Python中的使用 [树的可视化]
12 0
|
6天前
|
数据可视化 Python
python中Copula在多元联合分布建模可视化2实例合集|附数据代码
python中Copula在多元联合分布建模可视化2实例合集|附数据代码
|
6天前
|
数据采集 编解码 数据挖掘
使用Python进行多次降采样技术
使用Python进行多次降采样技术
13 1
|
6天前
|
机器学习/深度学习 数据采集 数据可视化
Python众筹项目结果预测:优化后的随机森林分类器可视化|数据代码分享
Python众筹项目结果预测:优化后的随机森林分类器可视化|数据代码分享
|
6天前
|
机器学习/深度学习 算法 测试技术
Python贷款违约预测:Logistic、Xgboost、Lightgbm、贝叶斯调参/GridSearchCV调参|数据分享
Python贷款违约预测:Logistic、Xgboost、Lightgbm、贝叶斯调参/GridSearchCV调参|数据分享
|
6天前
|
计算机视觉 Python
使用Python进行多点拟合以确定标准球的球心坐标
使用Python进行多点拟合以确定标准球的球心坐标
16 1
|
6天前
|
机器学习/深度学习 数据采集 数据可视化
数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化
数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化
|
6天前
|
SQL 分布式计算 数据可视化
数据分享|Python、Spark SQL、MapReduce决策树、回归对车祸发生率影响因素可视化分析
数据分享|Python、Spark SQL、MapReduce决策树、回归对车祸发生率影响因素可视化分析