R语言无套利区间模型期货期现研究:正向套利和反向套利次数、收益率分析华泰柏瑞300ETF可视化

简介: R语言无套利区间模型期货期现研究:正向套利和反向套利次数、收益率分析华泰柏瑞300ETF可视化

股指期货的套利交易有助于股指期货实现其价格发现以及风险规避的功能,因此提高套利交易的效率,对于发挥股指期货在经济发展中的作用有着重要的意义点击文末“阅读原文”获取完整代码数据


本文帮助客户对期货期现套利的研究。研究中主要以期货及其现货指数的数据为样本,真实的还原了市场,提高了研究的准确性。


统计套利策略


Bondarenko ( 2003)认为统计套利策略是指投资成本为零,但是其期望收益为正、条件期望收益为非负的投资策略;他同时指出,传统的套利定义过于严格,在实际操作中意义不大。Vidyamurthy ( 2004)认为,统计套利是基于相对定价的思想,相似的资产应该具有相似的价格,所以价差应保持在一个均衡的水平;如果价差变大,则认为产生套利机会。协整理论最早由Engle & Granger ( 1987>提出,Wahab & Lashgari ( 1993)、Lien & Luo ( 1993)、Tse ( 1995)发现协整关系是期货价格与现货价格之间的非常重要的关系。Burgess (1999)以基于协整关系的统计套利模型对英国富时100指数期货进行实证研究,取得了很好的效果。


无套利区间模型:


上限

下限

参数意义:

数据取值:

1.取10个交易日,现货都用华泰柏瑞30OETF,做出类似这样的图像

rs=0.028  
r1=0.056  
d=0.022842  
TE=0.001373  
Mf=0.1  
Cs1=0.02*0.01  
Fs1= 0.0173*0.01  
Cs2= 0.3698*0.01  
Fs2= 0.0265*0.01  
Cs3= 0.3698*0.01  
Fs3 =0.0265*0.01

期货数据:


读取数据

head(data)
##       日期 开盘价(元) 最高价(元) 最低价(元) 收盘价(元) 成交额(百万)  
## 1 40484.40    2515.82    2517.14    2509.18    2511.86     10352.92  
## 2 40484.40    2512.48    2521.34    2512.06    2521.34      6220.21  
## 3 40484.41    2521.41    2522.15    2514.64    2514.74      6700.37  
## 4 40484.41    2514.57    2514.57    2511.49    2513.30      4455.17  
## 5 40484.41    2513.39    2515.53    2513.31    2514.45      3821.64  
## 6 40484.42    2514.35    2519.64    2514.23    2519.64      4778.68  
##   成交量(股)  
## 1 1353244240  
## 2  842527307  
## 3  874920739  
## 4  593051008  
## 5  488534018  
## 6  717302833


无套利区间模型

#上限  
t=1  
T=t+16  
S=data$`收盘价(元)`  
upp=S[t]*((Css+Cfb+TE)*exp(rs-d)*(T-t)+(1+Csb+TE)*exp(r1*(T-t))-exp(d*(T-t)))/(1+Mf-(Mf+Cfs)*exp(r1*(T-t)))  
  
   
#下限  
  
lower=S[t]*(exp(d*(T-t)-(2+Csb-Cfs+TE)*exp(rs-d)*(T-t)+(1-Css-TE)*exp(rs*(T-t)) ))/(1-Mf+(Mf+Cfb)*exp(rs*(T-t)))

取10个交易日进行研究

for(t in 1:(nrow(data))){  
  #上限  
  T=t+13.575  
  S=data$`收盘价(元)`  
  ((Css+Cfb+TE)*exp(rs-d)*(T-t)+(1+Csb+TE)*exp(r1*(T-t))-exp(d*(T-t)))/
  
  #下限  
  T=t+0.506  
  (exp(d*(T-t)-(2+Csb-Cfs+TE)*exp(rs-d)*(T-t)+(1-Css-TE)*exp(rs*(T-t))))

点击标题查阅往期内容


Python配对交易策略统计套利量化交易分析股票市场


01

02

03

04


统计结果

stragedy=result$"市场价格" >=result$"无套利区间上限"  
stragedy[stragedy== "TRUE"]="正向套利"  
index=result$"市场价格" <=result$"无套利区间下限"  
stragedy[index== "TRUE"]="反向套利"  
stragedy[stragedy== "FALSE"]="0"

统计正向套利和反向套利机会的次数、收益率。

2.取18个交易日研究,存贷款利率参数变一下。画出图形。统计一下正向套利和反向套利机会的次数、收益率。

#参数取值  
  
rs=0.0255  
r1=0.056  
  
#无套利区间模型  
  
#上限  
t=1  
T=t+16  
S=data$`收盘价(元)`  
upp=S[t]*((Css+Cfb+TE)*exp(rs-d)*(T-t)+(1+Csb+TE)*exp(r1*(T-t))-exp(d*

3.取6月份9个交易日研究,存贷款利率参数变一下。画出图形。统计一下正向套利和反向套利机会的次数、收益率。

lower=numeric(0)  
for(t in 1:(nrow(data))){  
   
  #上限  
  T=t+11.875  
  S=data$`收盘价(元)`  
  ((Css+Cfb+TE)*exp(rs-d)*(T-t)+(1+Csb+TE)*exp(r1*(T-t))-exp(d*(T-t)))/

4.11月份,9个交易日究,存贷款利率参数变一下。画出图形,统计一下正向套利和反向套利机会的次数、收益率。

表:套利参数变更

#参数取值  
  
rs=0.013  
r1=0.0435  
d=0.02177  
Mf=0.42  
Fs1= 0.245*0.01  
Cfb=0.2715*0.01  
Cfs=0.2715*0.01  
  
#无套利区间模型  
  
#上限  
t=1  
T=t+16  
S=data$`收盘价(元)`

table(stragedy)

相关文章
|
10天前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
10天前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
11天前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
11天前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
4月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
4月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
11天前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
26天前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
39 3
|
4月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
4月前
利用R语言进行典型相关分析实战
利用R语言进行典型相关分析实战

热门文章

最新文章

下一篇
DDNS