R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码)

简介: R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码)

"AVOCADO"(异常植被变化检测)算法

AVOCADO"(异常植被变化检测)算法是一种连续的植被变化检测方法,也能捕捉植被再生。该算法基于 R 软件包 "npphen"(Chavez 等人,2017 年),开发用于监测物候变化,并经过调整,以半自动和连续的方式监测森林干扰和再生。该算法使用所有可用数据,不需要某些预处理步骤,如去除异常值。参考植被(本例中为未受干扰的森林)取自附近已知在整个时间序列中未受干扰的像素,因此无需留出部分时间序列作为历史基线。通过在 AVOCADO 中使用完整的时间序列,可以对植被变化做出更可靠的预测,同时提高我们处理数据缺口的能力。该算法考虑了年度物候的自然变异性(利用核拟合的灵活性),因此适用于监测季节性强的地区(如干旱生态系统)和渐变/微小变化的地区(如退化)。

"AVOCADO"(异常植被变化检测)算法是一种用于检测植被变化的算法。这个算法主要用于遥感图像的处理,通过比较不同时间点的图像来识别和定位植被变化的区域。

该算法的核心思想是将植被的变化视为异常值,并使用统计学方法来检测和分类这些异常值。具体而言,AVOCADO算法使用了聚类分析和假设检验的技术,对图像中的像素进行分类和比较。

首先,AVOCADO算法将两个不同时间点的图像分别转换为灰度图像。然后,使用聚类分析将像素分为不同的类别,类别之间的差异被认为是植被变化的指标。

接下来,AVOCADO算法使用假设检验来确定哪些类别的差异是统计显著的。通过比较类别之间的均值和方差,算法能够确定哪些区域的植被发生了显著变化。

最后,AVOCADO算法将检测到的变化区域标记出来,并生成一个变化图像,以便进一步分析和应用。

总的来说,AVOCADO算法是一种有效的植被变化检测方法,可以在遥感图像中准确地识别和定位植被变化的区域。它可以在农业、环境监测和城市规划等领域中得到广泛应用。

步骤

步骤 1:安装所需软件包

软件包可通过 github 获取,并可通过 "远程 "安装:

library(remotes) 
install_github('MDecuy/AVOCADO')  
#load library
library(AVOCADO)

 

请注意,关于 AVOCADO 算法所有参数的解释可在 github 文档中找到。

其他需要的软件包:rgdal、raster、npphen、bfastSpatial、RColorBrewer、rts、lubridate

GitHub - MDecuy/AVOCADO: Monitoring vegetation change in a continuous way

步骤 2:下载卫星数据

目前有多种卫星来源和数据下载方式,如地球探索者或谷歌地球引擎平台。有关如何在谷歌地球引擎指南平台上下载各种卫星数据的信息很多,但在此我们提供了一个 Landsat Collection 2 Level 2 数据的小型示例脚本。

第一步是上传您感兴趣区域(AOI)的形状文件。这可以在 "资产 "选项卡下完成,一旦上传,您就可以将目录(见 "表 ID")添加到下面的脚本中(在 "var input_polygon "下)。

GEE代码:

//Downloading Landsat data via the Google Earth Engine (GEE) platform.
// Paste this code into your GEE script page
// Specify the location of the before uploaded shapefile in your assets
var input_polygon = 'users/yourusername/ AOI';
// Export folder in your google drive
var input_export_folder = 'FolderName_You_Created_in_Your_GoogleDrive_Account';
// Start and end dates
var input_StartStr = ee.String('1990-01-01');
var input_FinishStr = ee.String('2015-01-01');
/* available indices: NDVI (ndvi_ind), NBR (nbr_ind), EVI (evi_ind), SAVI (savi_ind), tasseled cap 
brightness (Tcap_bri_ind), tasseled cap greenness (Tcap_gre_ind), tasseled cap wetness (Tcap_wet_ind)
Specify the vegetation indices you are interested in by marking it as TRUE, or if not as FALSE. 
In this example we use NDMI.*/
var ndvi_ind = ['FALSE'];
var ndmi_ind = ['TRUE'];
var nbr_ind = ['FALSE'];
var evi_ind = ['FALSE'];
var savi_ind = ['FALSE'];
var Tcap_bri_ind = ['FALSE'];
var Tcap_gre_ind = ['FALSE'];
var Tcap_wet_ind = ['FALSE'];
///
// END of input variables.
/* The following lines can be left default, unless you want 
to change e.g. the cloud cover percentage.*/
///
// Buffer to download around the above area, use 0 for no buffer
var input_buffer = 0;
// Convert text string dates to date tpe
var Start = ee.Date(input_StartStr);
var Finish = ee.Date(input_FinishStr);
// Create a feature collection out of the fustion table id
var Polygon = ee.FeatureCollection(ee.String(input_polygon));
// Buffer the area of interest
var PolygonBuffer = input_buffer === 0 ? Polygon.first().geometry() : Polygon.first().geometry().buffer(input_buffer);
Map.addLayer(PolygonBuffer,null,'Buffer');
Map.centerObject(PolygonBuffer);
// Standard names to rename the bands regardless of collection
var selected_bands = ['blue','green','red','nir','swir','swir2','QA_PIXEL'];
// Applies scaling factors.
var applyScaleFactors = function (image) {
  var opticalBands = image.select('SR_.*').multiply(0.0000275).add(-0.2);
  return image.addBands(opticalBands, null, true);
};
// Merge the 3 collections, select, and rename the bands to standard names
var Collection = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2').map(applyScaleFactors)
  .select(['SR_B1','SR_B2','SR_B3','SR_B4','SR_B5','S
相关文章
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
122 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
14天前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
48 4
|
2月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
3月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
3月前
|
机器学习/深度学习 人工智能 运维
[ICDE2024]多正常模式感知的频域异常检测算法MACE
[ICDE2024]多正常模式感知的频域异常检测算法MACE
|
6月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
117 9
|
8月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
12月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化

热门文章

最新文章