R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码)

简介: R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码)

"AVOCADO"(异常植被变化检测)算法

AVOCADO"(异常植被变化检测)算法是一种连续的植被变化检测方法,也能捕捉植被再生。该算法基于 R 软件包 "npphen"(Chavez 等人,2017 年),开发用于监测物候变化,并经过调整,以半自动和连续的方式监测森林干扰和再生。该算法使用所有可用数据,不需要某些预处理步骤,如去除异常值。参考植被(本例中为未受干扰的森林)取自附近已知在整个时间序列中未受干扰的像素,因此无需留出部分时间序列作为历史基线。通过在 AVOCADO 中使用完整的时间序列,可以对植被变化做出更可靠的预测,同时提高我们处理数据缺口的能力。该算法考虑了年度物候的自然变异性(利用核拟合的灵活性),因此适用于监测季节性强的地区(如干旱生态系统)和渐变/微小变化的地区(如退化)。

"AVOCADO"(异常植被变化检测)算法是一种用于检测植被变化的算法。这个算法主要用于遥感图像的处理,通过比较不同时间点的图像来识别和定位植被变化的区域。

该算法的核心思想是将植被的变化视为异常值,并使用统计学方法来检测和分类这些异常值。具体而言,AVOCADO算法使用了聚类分析和假设检验的技术,对图像中的像素进行分类和比较。

首先,AVOCADO算法将两个不同时间点的图像分别转换为灰度图像。然后,使用聚类分析将像素分为不同的类别,类别之间的差异被认为是植被变化的指标。

接下来,AVOCADO算法使用假设检验来确定哪些类别的差异是统计显著的。通过比较类别之间的均值和方差,算法能够确定哪些区域的植被发生了显著变化。

最后,AVOCADO算法将检测到的变化区域标记出来,并生成一个变化图像,以便进一步分析和应用。

总的来说,AVOCADO算法是一种有效的植被变化检测方法,可以在遥感图像中准确地识别和定位植被变化的区域。它可以在农业、环境监测和城市规划等领域中得到广泛应用。

步骤

步骤 1:安装所需软件包

软件包可通过 github 获取,并可通过 "远程 "安装:

library(remotes) 
install_github('MDecuy/AVOCADO')  
#load library
library(AVOCADO)

 

请注意,关于 AVOCADO 算法所有参数的解释可在 github 文档中找到。

其他需要的软件包:rgdal、raster、npphen、bfastSpatial、RColorBrewer、rts、lubridate

GitHub - MDecuy/AVOCADO: Monitoring vegetation change in a continuous way

步骤 2:下载卫星数据

目前有多种卫星来源和数据下载方式,如地球探索者或谷歌地球引擎平台。有关如何在谷歌地球引擎指南平台上下载各种卫星数据的信息很多,但在此我们提供了一个 Landsat Collection 2 Level 2 数据的小型示例脚本。

第一步是上传您感兴趣区域(AOI)的形状文件。这可以在 "资产 "选项卡下完成,一旦上传,您就可以将目录(见 "表 ID")添加到下面的脚本中(在 "var input_polygon "下)。

GEE代码:

//Downloading Landsat data via the Google Earth Engine (GEE) platform.
// Paste this code into your GEE script page
// Specify the location of the before uploaded shapefile in your assets
var input_polygon = 'users/yourusername/ AOI';
// Export folder in your google drive
var input_export_folder = 'FolderName_You_Created_in_Your_GoogleDrive_Account';
// Start and end dates
var input_StartStr = ee.String('1990-01-01');
var input_FinishStr = ee.String('2015-01-01');
/* available indices: NDVI (ndvi_ind), NBR (nbr_ind), EVI (evi_ind), SAVI (savi_ind), tasseled cap 
brightness (Tcap_bri_ind), tasseled cap greenness (Tcap_gre_ind), tasseled cap wetness (Tcap_wet_ind)
Specify the vegetation indices you are interested in by marking it as TRUE, or if not as FALSE. 
In this example we use NDMI.*/
var ndvi_ind = ['FALSE'];
var ndmi_ind = ['TRUE'];
var nbr_ind = ['FALSE'];
var evi_ind = ['FALSE'];
var savi_ind = ['FALSE'];
var Tcap_bri_ind = ['FALSE'];
var Tcap_gre_ind = ['FALSE'];
var Tcap_wet_ind = ['FALSE'];
///
// END of input variables.
/* The following lines can be left default, unless you want 
to change e.g. the cloud cover percentage.*/
///
// Buffer to download around the above area, use 0 for no buffer
var input_buffer = 0;
// Convert text string dates to date tpe
var Start = ee.Date(input_StartStr);
var Finish = ee.Date(input_FinishStr);
// Create a feature collection out of the fustion table id
var Polygon = ee.FeatureCollection(ee.String(input_polygon));
// Buffer the area of interest
var PolygonBuffer = input_buffer === 0 ? Polygon.first().geometry() : Polygon.first().geometry().buffer(input_buffer);
Map.addLayer(PolygonBuffer,null,'Buffer');
Map.centerObject(PolygonBuffer);
// Standard names to rename the bands regardless of collection
var selected_bands = ['blue','green','red','nir','swir','swir2','QA_PIXEL'];
// Applies scaling factors.
var applyScaleFactors = function (image) {
  var opticalBands = image.select('SR_.*').multiply(0.0000275).add(-0.2);
  return image.addBands(opticalBands, null, true);
};
// Merge the 3 collections, select, and rename the bands to standard names
var Collection = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2').map(applyScaleFactors)
  .select(['SR_B1','SR_B2','SR_B3','SR_B4','SR_B5','S
相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
【优秀python web系统毕设】基于python的全国招聘数据分析可视化系统,包括随机森林算法
本文介绍了一个基于Python的全国招聘数据分析可视化系统,该系统利用数据挖掘技术、随机森林算法和数据可视化技术,从招聘网站抓取数据,进行处理、分析和预测,帮助用户洞察招聘市场,为求职者和企业提供决策支持。
|
3天前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。
|
2月前
|
机器学习/深度学习 监控 算法
目标检测算法技术
8月更文挑战第11天
|
2月前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第5天
|
2月前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第8天
|
2月前
|
数据采集 算法 数据可视化
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
本文设计并实现了一个基于Python网络爬虫和机器学习模型的今日头条新闻数据分析与热度预测系统,通过数据采集、特征工程、模型构建和可视化展示,挖掘用户行为信息和内容特征,预测新闻热度,为内容推荐和舆情监控提供决策支持。
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
|
2月前
|
机器学习/深度学习 数据采集 算法
基于python向量机算法的数据分析与预测
本文通过数据预处理、标准化和SVM模型构建与优化,对罗平菜籽油销售数据进行分析和预测,使用优化后的SVM模型得到高准确度的销售预测结果,为销售决策提供参考依据。
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于Python flask的豆瓣电影数据分析可视化系统,功能多,LSTM算法+注意力机制实现情感分析,准确率高达85%
本文介绍了一个基于Python Flask框架的豆瓣电影数据分析可视化系统,该系统集成了LSTM算法和注意力机制进行情感分析,准确率高达85%,提供了多样化的数据分析和情感识别功能,旨在帮助用户深入理解电影市场和观众喜好。
|
2月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
48 2
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
107 4
下一篇
无影云桌面