Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-2

简介: Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)

Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-1

https://developer.aliyun.com/article/1537819


6. 绘制柱状图

使用bar函数可以绘制柱状图。柱状图需要水平的x坐标值,以及每一个x坐标值对应的y坐标值,从而形成柱状的图。柱状图主要用来纵向对比和横向对比的。例如,根据年份对销售收据进行纵向对比,x坐标值就表示年份,y坐标值表示销售数据。

【示例】使用bar绘制柱状图,并设置柱的宽度

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 创建x,y坐标
x = [1980, 1985, 1990, 1995]
y = [1000, 3000, 4000, 5000]
x_label = ['1980年', '1985年', '1990年', '1995年']
# 调用bar函数绘制柱状图
plt.bar(x, y, width=3)  # 通过width修改柱的宽度,数值为标准柱宽度的倍数
# 设置字体解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
# 通过xticks修改x坐标的值
# plt.xticks(x, x)
plt.xticks(x, x_label)
# 设置x,y轴的名称
plt.xlabel('年份')
plt.ylabel('销量')
# 设置图例名称
plt.title('年份销量对比图')
# 显示绘制图形
plt.show()

运行效果如下:

注意:bar函数的宽度并不是像素宽度。bar函数会根据二维坐标系的尺寸,以及x坐标值的多少,自动确定每一个柱的宽度,而width指定的宽度就是这个标准柱宽度的倍数。该参数值可以是浮点数,如0.5,表示柱的宽度是标准宽度的0.5倍。

【示例】使用bar和barh绘制柱状图

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 创建x,y
np.random.seed(0)
x = np.arange(5)  # 生成[0, 5)之间的整数
y = np.random.randint(-5, 5, 5)  # 随机生成[-5, 5)之间的整数
# 将画布分为一行两列,在第一部分用bar函数画
plt.subplot(1, 2, 1)
# 在0位置处添加水平方向蓝色线条
plt.axhline(0, color='blue', linewidth=3)
plt.bar(x, y, color='blue')
# 在第二部分用barh函数画
plt.subplot(1, 2, 2)
# 在0位置处添加垂直方向红色线条
plt.axvline(0, color='red', linewidth=2)
plt.barh(x, y, color='red')
# 显示绘制图形
plt.show()

运行效果如下:

【示例】对部分柱状图,使用颜色区分

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 创建x,y
np.random.seed(0)
x = np.arange(5)  # 生成[0, 5)之间的整数
y = np.random.randint(-5, 5, 5)  # 随机生成[-5, 5)之间的整数
v_bar = plt.bar(x, y, color='blue')
# 对y大于0的合作为蓝色,小于0设置为绿色
for bar, height in zip(v_bar, y):
    if height < 0:
        bar.set(color='green')
# 显示绘制图形
plt.show()

运行效果如下:

补充:zip函数将多个可迭代对象中对应位置的元素打包成一个个元组,然后返回一个新的可迭代对象(通常是一个zip对象)。

语法:

  • 语法:zip(iterable, …)
  • 参数:
    iterable: 一个或多个可迭代对象


【示例】将两个列表按位置打包成元组的列表

names = ['Alice', 'Bob', 'Charlie']
ages = [25, 30, 35]
person_info = zip(names, ages)
print(list(person_info))  # 输出:[('Alice', 25), ('Bob', 30), ('Charlie', 35)]

【示例】柱状图使用实例

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 准备数据如 电影名称以及电影票房数
movie_name = ['千与千寻', '玩具总动员4', '黑衣人:全球追缉']
# 连续3天的票房数
real_num1 = [7548, 4013, 1673]
real_num2 = [5435, 1845, 1028]
real_num3 = [4203, 3305, 1369]
x = np.arange(len(movie_name))
# 绘制柱状图
# 设置宽度
width = 0.3
plt.bar(x, real_num1, alpha=0.5, width=width, label=movie_name[0])
# 利用列表推导式设置宽度使其柱状图不重叠
plt.bar([i + width for i in x], real_num2, alpha=0.5, width=width, label=movie_name[1])
plt.bar([i + 2 * width for i in x], real_num3, alpha=0.5, width=width, label=movie_name[2])
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
# 利用列表推导式设置x坐标的值, 第一天 第二天 第三天
x_label = ['第{}天'.format(i + 1) for i in x]
plt.xticks([i + width for i in x], x_label)
# 添加y轴名称
plt.ylabel('票房数')
# 添加图例
plt.legend()
# 添加标题
plt.title('电影票房数')
# 显示绘制图形
plt.show()

运行效果如下:

7. 绘制饼状图

pie函数可以绘制饼状图,饼图主要是用来呈现比例的。只要传入比例数据即可。

【示例】绘制饼状图

# 导入模块
import matplotlib.pyplot as plt
# 男女人数及比例 单位:万人
man = 71135
woman = 68185
# 比例
man_perc = man / (man + woman)
woman_perc = woman / (man + woman)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
# 添加名称
labels = ['男', '女']
# 颜色
colors = ['biue', 'orange']
# 绘制饼状图 调用pie方法。
# explode参数用于指定饼图中各个扇形的偏移程度。
# autopct参数用于指定如何显示每个扇形的百分比值
plt.pie([man_perc, woman_perc], labels=labels, explode=(0, 0.05), autopct='%0.1f%%')
# 显示绘制图形
plt.show()

运行效果如下:

8. 绘制直方图

直方图与柱状图的分格类似,都是由若干个柱组成,但直方图和柱状图的含义却有很大的差异。直方图是用来观察分布状态的,而柱状图是用来看每一个X坐标对应的Y的值的。也就是说,直方图关注的是分布,并不关心具体的某个值,而柱状图关心的是具体的某个值。使用hist函数绘制直方图。

【示例】使用randn函数生成1000个正太分布的随机数,使用hist函数绘制这1000个随机数的分布状态

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 生成1000个标准正态分布随机数
x = np.random.randn(1000)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
# 设置标题
plt.title('标准正态分布直方图')
# 绘制直方图
plt.hist(x, bins=100)  # 将数据分成100个箱子
# 显示绘制的图形
plt.show()

运行效果如下:

【示例】使用normal函数生成1000个正太分布的随机数,使用hist函数绘制这100个随机数的分布状态

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 调用np.rangom.normal()指定期望和方差的正态分布,(期望, 标准差, 个数)
x = np.random.normal(0, 0.8, 1000)
y = np.random.normal(-2, 1, 1000)
z = np.random.normal(3, 2, 1000)
# 参数alpha用于设置透明度, 参数bins=100表示将数据分成100个箱子
kwargs = dict(bins=100, alpha=0.5)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
# 设置图形标题
plt.title('非标准正态分布直方图')
# 绘制直方图
plt.hist(x, **kwargs)
plt.hist(y, **kwargs)
plt.hist(z, **kwargs)
# 显示绘制的图形
plt.show()

运行效果如下:

9. 绘制等高线图

【示例】使用pyplot绘制等高线图

# 导入模块
import matplotlib.pyplot as plt
import numpy as np
# 生成100个-10-10之间的等差数列
x = np.linspace(-10, 10, 100)
y = np.linspace(-10, 10, 100)
# 计算出x,y相交的点X,Y
X, Y = np.meshgrid(x, y)
# 计算Z
Z = np.sqrt(X**2 + Y**2)  # 计算括号内值的开方
# 绘制等高线图
# plt.contour(X, Y, Z)
plt.contourf(X, Y, Z)  # 在contour()的基础上有颜色填充
# 显示绘制的图形
plt.show()

运行效果如下:

10. 绘制三维图

matplotlib支持绘制三维线框图, 三维曲面图, 三维散点图. 需要使用axes3d提供3d坐标系.

【示例】使用pyplot包和Matplotlib绘制三维图

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax3d = fig.add_subplot(121, projection='3d')

# filled为bool类型数组,在True的元素下标位置绘制体元素
i, j, k = np.indices((3, 3, 3))
filled = (i == j) & (j == k)  # 3行3列3层,对角线为True
c = plt.get_cmap('RdBu')(np.linspace(0, 1, 27)).reshape(3, 3, 3, 4)

# ax3d.voxels(filled)             #filled为True的位置绘制六面体
ax3d.voxels(filled, facecolors=c)  # filled为True的位置绘制六面体,并设置颜色

#
ax3d = fig.add_subplot(122, projection='3d')
# x,y,z=np.indices((3,4,5))
# ax3d.voxels(x,y,z,filled)

plt.show()

运行效果如下:

相关文章
|
1天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
1天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
1天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。
|
5月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
5月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
93 1
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8

热门文章

最新文章

推荐镜像

更多