Matplotlib 教程 之 Matplotlib 散点图 7

简介: 使用 Matplotlib 的 `scatter()` 方法绘制散点图。该方法接受多个参数,如 x 和 y 数据点、点的大小(s)、颜色(c)和样式(marker)等。通过示例展示了如何利用颜色数组和颜色映射 (`cmap`) 来增强图表的表现力,并使用 `colorbar()` 方法添加颜色条,使数据可视化更加直观。

Matplotlib 教程 之 Matplotlib 散点图 7

Matplotlib 散点图

我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。

scatter() 方法语法格式如下:

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, , edgecolors=None, plotnonfinite=False, data=None, *kwargs)

参数说明:

x,y:长度相同的数组,也就是我们即将绘制散点图的数据点,输入数据。

s:点的大小,默认 20,也可以是个数组,数组每个参数为对应点的大小。

c:点的颜色,默认蓝色 'b',也可以是个 RGB 或 RGBA 二维行数组。

marker:点的样式,默认小圆圈 'o'。

cmap:Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组的时才使用。如果没有申明就是 image.cmap。

norm:Normalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。

vmin,vmax::亮度设置,在 norm 参数存在时会忽略。

alpha::透明度设置,0-1 之间,默认 None,即不透明。

linewidths::标记点的长度。

edgecolors::颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。

plotnonfinite::布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。

**kwargs::其他参数。

如果要显示颜色条,需要使用 plt.colorbar() 方法:

实例

import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])

plt.scatter(x, y, c=colors, cmap='viridis')

plt.colorbar()

plt.show()

目录
相关文章
|
28天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
30 1
|
29天前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
35 3
|
28天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
18 1
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
18 3
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
16 1
|
29天前
|
数据可视化 DataX Python
Matplotlib 教程 之 Seaborn 教程 6
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供高级接口和美观的默认主题,简化了复杂图形的绘制过程。本文档介绍了 Seaborn 的主要绘图函数,如 `sns.lineplot()` 用于绘制变量变化趋势的折线图,并给出了示例代码。
26 0
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 4
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供了高级接口和美观的默认主题,简化了复杂图形的绘制过程。以下示例展示了如何使用 Seaborn 和 Matplotlib 绘制一个简单的柱状图,展示不同产品的销售情况。
13 0
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib 中文显示 4
Matplotlib 中文显示教程,介绍如何通过设置字体参数或下载支持中文的字体库(如思源黑体)来实现在 Matplotlib 中正确显示中文。示例代码展示了如何使用思源黑体设置图表标题和轴标签的中文显示。
11 0
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib 中文显示 3
Matplotlib 是一个强大的绘图库,但默认不支持中文显示。通过设置字体参数或下载支持中文的字体库,可以解决这一问题。例如,设置 `plt.rcParams['font.family']` 为 `'Heiti TC'`,即可在图表中正确显示中文标题和标签。
14 0
|
1月前
|
Linux iOS开发 MacOS
Matplotlib 教程 之 Matplotlib 中文显示 2
Matplotlib 中文显示教程,介绍如何通过设置 Matplotlib 字体参数或下载支持中文的字体库来实现中文显示。适用于 Windows、Linux 和 macOS 系统,确保图表中文本正确呈现。
15 0