Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-1

简介: Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)

一、Matplotlib简介

1. 什么是Matplotlib

Matplotlib 是一个Python的 2D绘图库。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。

通过学习Matplotlib,可让数据可视化,更直观的真实给用户。使数据更加客观、更具有说服力。 Matplotlib是Python的库,又是开发中常用的库。


2. Matplotlib的安装
  1. Windows 系统安装 Matplotlib,执行如下命令:
  • pip install matplotlib

换源安装执行命令:

二、绘制基础

在使用Matplotlib绘制图形时,其中有两个最为常用的场景。一个是画点,一个是画线。pyplot基本方法的使用如下表。

1. 绘制直线

在使用Matplotlib绘制线性图时,其中最简单的是绘制线图。在下面的实例代码中,使用Matplotlib绘制了一个简单的直线。具体实现过程如下:


  • 导入模块pyplot,并给它指定别名plt,以免反复输入pyplot。在模块pyplot中包含很多用于生产图表的函数。
  • 将绘制的直线坐标传递给函数plot()。
  • 通过函数plt.show()打开Matplotlib查看器,显示绘制的图形。

【示例】根据两点绘制一条线

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 准备要绘制点的坐标(1, 2) (4, 8)
# 调用绘制plot方法
plt.plot([1, 4], [2, 8])  # 第一个中括号里是绘制点的横坐标,第二个为绘制点的纵坐标
# 显示绘制的图
plt.show()

注意:在运行以上代码是可能会出现以下类似的报错:

f311dfaa16a1c6f327df459a3263b5c0_5bc9efe190954462ba7197beaed82273.png

这个错误是因为你的Matplotlib使用了一个名为backend_interagg的后端,但该后端没有FigureCanvas属性。可以尝试更改Matplotlib的后端配置。

例如在代码的开头添加以下代码来更改Matplotlib的后端为默认的TkAgg后端:

import matplotlib
matplotlib.use('TkAgg')

运行效果如下:

2. 绘制折线图

在上述的实例代码中,使用两个坐标绘制一条直线,接下来使用平方数序列1、9、25、49和81来绘制一个折线图。

【示例】绘制折线图

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 准备绘制点的坐标
x = [1, 3, 5, 7, 9]  # 绘制点的横坐标
y = [1, 9, 25, 49, 81]  # 绘制点的纵坐标
# 调用绘制plot方法
plt.plot(x, y)
# 显示绘制的图
plt.show()

运行效果如下:

3. 设置样式

【示例】绘制折线图并设置样式

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 准备绘制点坐标
x = [1, 2, 3, 4, 5]
y = [1, 8, 27, 64, 125]
# 调用绘制plot方法
# 利用linewidth属性设置线条的宽度
plt.plot(x, y, linewidth=5)
# 添加x,y轴名称
plt.xlabel('x', fontsize=14)  # fontsize: 设置字体大小
plt.ylabel('x^3', fontsize=14)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签,字体可自由设置电脑中自带的字体
# 给图标添加标题
plt.title('折线绘制图', fontsize=24)
# 显示绘制的图
plt.show()

运行效果如下:

Matplotlib 默认情况不支持中文,我们可以使用以下简单的方法来解决:

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
4. 绘制曲线图

【示例】绘制一元二次方程的曲线y=x^2

这里我们先遍历-100到100之间的整数,然后利用列表推导式求出他们的平方值

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 准备绘制点坐标
x = range(-100, 100)  # range函数用于生成一个整数序列,这里用于生成-100到100的整数
y = [i ** 2 for i in x]  # 列表推导式生成了一个包含-100到100的平方的列表
# 调用绘制plot方法
plt.plot(x, y)
# 保存图片
# plt.savefig('一元二次方程曲线图')  # 默认图片格式为png
plt.savefig('一元二次方程曲线图.jpg')  # 设置图片格式
# 显示绘制的图
plt.show()

运行效果如下:

4515a595c9ee2cd67638b022e0663ea6_ac27c5fbb6e24c39bd1f2ce4bcbbbb34.png

【示例】绘制正弦曲线和余弦曲线

使用plt函数绘制任何曲线的第一步都是生成若干个坐标点(x,y),坐标点越多越好。取0到10之间100个等差数作为x的坐标,然后将这100个x坐标值一起传入Numpy的sin和cos函数,就会得到100个y坐标值,最后就可以使用plot函数绘制正弦曲线和余弦曲线。

# 导入matplotlib和numpy模块
import matplotlib.pyplot as plt
import numpy as np

# 生成0-10之间100个等差数列
x = np.linspace(0, 10, 100)
sin_y = np.sin(x)  # sin函数用于计算给定角度的正弦值
cos_y = np.cos(x)  # cos函数用于计算给定角度的余弦值
# 调用绘制plot方法
plt.plot(x, sin_y)  # 默认第一条曲线颜色为蓝色,第二条为橘色
plt.plot(x, cos_y)
# 保存图片
plt.savefig('正弦余弦曲线图.jpg')
# 显示绘制的图片
plt.show()

运行效果如下:

上面的示例可以看到,调用两次plot函数,会将sin和cos曲线绘制到同一个二维坐标系中,如果想绘制到两张画布中,可以调用subplot()函数将画布分区。

【示例】将画布分为区域,将图画到画布的指定区域

# 导入matplotlib和numpy模块
import matplotlib.pyplot as plt
import numpy as np

# 生成0-10之间的100个等差数列
x = np.linspace(0, 10, 100)
sin_y = np.sin(x)
cos_y = np.cos(x)
# 对画布进行分区处理, (行数, 列数, 哪个区域) 将画布分为2行2列
plt.subplot(2, 2, 1)  # 将图画在区1
# 修改x, y轴的坐标
plt.xlim(-5, 20)
plt.ylim(-2, 2)
plt.plot(x, sin_y)

plt.subplot(2, 2, 2)  # 将图画在区2
plt.plot(x, cos_y)
# 显示绘制的图片
plt.show()

运行效果如下:

5. 绘制散点图

使用scatter函数可以绘制随机点,该函数需要接收x坐标和y坐标的序列。

【示例】sin和cos函数的散点图

# 导入matplotlib和numpy模块
import matplotlib.pyplot as plt
import numpy as np

# 生成0-10之间的100个等差数列
x = np.linspace(0, 10, 100)
sin_y = np.sin(x)
cos_y = np.cos(x)
# 绘制正弦余弦图
# plt.plot(x, sin_y, 'o')  # 加一个参数'o'效果与scatter是一样的
# plt.plot(x, cos_y, 'o')
# 绘制散点图
plt.scatter(x, sin_y)
plt.scatter(x, cos_y)
# 显示绘制的图
plt.show()

运行效果如下:

【示例】使用scatter画10中大小100中颜色的散点图

# 导入matplotlib和numpy模块
import matplotlib.pyplot as plt
import numpy as np

# 创建x, y
np.random.seed(0)  # 执行多次,通过设置相同的种子,可以确保每次运行生成的随机数序列是可重复的。
x = np.random.rand(100)  # 生成100个[0, 1)之间的随机数
y = np.random.rand(100)
# 生成100种不同大小
size = np.random.rand(100) * 1000  # 乘一千扩大范围,效果跟明显
# 生成100种不同的颜色
color = np.random.rand(100)
# print(x)
# 绘制散点图
plt.scatter(x, y, s=size, c=color, alpha=0.8)  # s表示大小, c表示颜色,alpha表示透明度
plt.show()

运行效果如下:

注意:这里生成的点的大小个数和颜色个数必须要与点的个数相同。

作为线性图的替代,可以通过向 plot() 函数添加格式字符串来显示离散值。 可以使用以下格式化字符。

image.png

以下是颜色的缩写:

image.png

【示例】不同种类不同颜色的线

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 创建0-10之间的100个等差数列
x = np.linspace(0, 10, 100)
# 调用绘制plot方法
plt.plot(x, x + 0, '-g')  # 实线 绿色
plt.plot(x, x + 1, '--c')  # 虚线 浅蓝色
plt.plot(x, x + 2, '-.k')  # 点划线 黑色
plt.plot(x, x + 3, 'or')  # 圆标记 红色
plt.plot(x, x + 4, 'xy')  # 叉叉 黄色
plt.plot(x, x + 5, 'dm')  # 砖石 品红色
# 显示绘制的图
plt.show()

运行效果如下:

【示例】不同种类不同颜色的线并添加图例

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 创建0-10之间的100个等差数列
x = np.linspace(0, 10, 100)
# 调用绘制plot方法
# 给plot方法添加参数label
plt.plot(x, x + 0, '-g', label='-g')  # 实线 绿色
plt.plot(x, x + 1, '--c', label='--c')  # 虚线 浅蓝色
plt.plot(x, x + 2, '-.k', label='-.k')  # 点划线 黑色
plt.plot(x, x + 3, 'or', label='or')  # 圆标记 红色
plt.plot(x, x + 4, 'xy', label='xy')  # 叉叉 黄色
plt.plot(x, x + 5, 'dm', label='dm')  # 砖石 品红色
# 使用legend()添加图例
# 通过参数loc设置图例位置,默认在upper left左上角, fancybox边框  framealpha透明度  shadow阴影  borderpad边框宽度
plt.legend(loc='lower right', fancybox=True, framealpha=0.5, shadow=True, borderpad=1)
# 显示绘制的图
plt.show()

使用legend函数添加图例,通过参数loc设置图例位置,默认在upper left左上角, fancybox边框 framealpha透明度 shadow阴影 borderpad边框宽度。

运行效果如下:


Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-2

https://developer.aliyun.com/article/1537820

相关文章
|
1天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
1天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
1天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。
|
人工智能 Python 资源调度
Python计算&绘图——曲线拟合问题(转)
题目来自老师的课后作业,如下所示。很多地方应该可以直接调用函数,但是初学Python,对里面的函数还不是很了解,顺便带着学习的态度,尽量自己动手code。             测试版代码,里面带有很多注释和测试代码:   [python] view plain copy  ...
1426 0
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。

推荐镜像

更多