Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-1

简介: Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)

一、Matplotlib简介

1. 什么是Matplotlib

Matplotlib 是一个Python的 2D绘图库。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。

通过学习Matplotlib,可让数据可视化,更直观的真实给用户。使数据更加客观、更具有说服力。 Matplotlib是Python的库,又是开发中常用的库。


2. Matplotlib的安装
  1. Windows 系统安装 Matplotlib,执行如下命令:
  • pip install matplotlib

换源安装执行命令:

二、绘制基础

在使用Matplotlib绘制图形时,其中有两个最为常用的场景。一个是画点,一个是画线。pyplot基本方法的使用如下表。

1. 绘制直线

在使用Matplotlib绘制线性图时,其中最简单的是绘制线图。在下面的实例代码中,使用Matplotlib绘制了一个简单的直线。具体实现过程如下:


  • 导入模块pyplot,并给它指定别名plt,以免反复输入pyplot。在模块pyplot中包含很多用于生产图表的函数。
  • 将绘制的直线坐标传递给函数plot()。
  • 通过函数plt.show()打开Matplotlib查看器,显示绘制的图形。

【示例】根据两点绘制一条线

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 准备要绘制点的坐标(1, 2) (4, 8)
# 调用绘制plot方法
plt.plot([1, 4], [2, 8])  # 第一个中括号里是绘制点的横坐标,第二个为绘制点的纵坐标
# 显示绘制的图
plt.show()

注意:在运行以上代码是可能会出现以下类似的报错:

f311dfaa16a1c6f327df459a3263b5c0_5bc9efe190954462ba7197beaed82273.png

这个错误是因为你的Matplotlib使用了一个名为backend_interagg的后端,但该后端没有FigureCanvas属性。可以尝试更改Matplotlib的后端配置。

例如在代码的开头添加以下代码来更改Matplotlib的后端为默认的TkAgg后端:

import matplotlib
matplotlib.use('TkAgg')

运行效果如下:

2. 绘制折线图

在上述的实例代码中,使用两个坐标绘制一条直线,接下来使用平方数序列1、9、25、49和81来绘制一个折线图。

【示例】绘制折线图

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 准备绘制点的坐标
x = [1, 3, 5, 7, 9]  # 绘制点的横坐标
y = [1, 9, 25, 49, 81]  # 绘制点的纵坐标
# 调用绘制plot方法
plt.plot(x, y)
# 显示绘制的图
plt.show()

运行效果如下:

3. 设置样式

【示例】绘制折线图并设置样式

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 准备绘制点坐标
x = [1, 2, 3, 4, 5]
y = [1, 8, 27, 64, 125]
# 调用绘制plot方法
# 利用linewidth属性设置线条的宽度
plt.plot(x, y, linewidth=5)
# 添加x,y轴名称
plt.xlabel('x', fontsize=14)  # fontsize: 设置字体大小
plt.ylabel('x^3', fontsize=14)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签,字体可自由设置电脑中自带的字体
# 给图标添加标题
plt.title('折线绘制图', fontsize=24)
# 显示绘制的图
plt.show()

运行效果如下:

Matplotlib 默认情况不支持中文,我们可以使用以下简单的方法来解决:

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
4. 绘制曲线图

【示例】绘制一元二次方程的曲线y=x^2

这里我们先遍历-100到100之间的整数,然后利用列表推导式求出他们的平方值

# 导入matplotlib模块
import matplotlib.pyplot as plt

# 准备绘制点坐标
x = range(-100, 100)  # range函数用于生成一个整数序列,这里用于生成-100到100的整数
y = [i ** 2 for i in x]  # 列表推导式生成了一个包含-100到100的平方的列表
# 调用绘制plot方法
plt.plot(x, y)
# 保存图片
# plt.savefig('一元二次方程曲线图')  # 默认图片格式为png
plt.savefig('一元二次方程曲线图.jpg')  # 设置图片格式
# 显示绘制的图
plt.show()

运行效果如下:

4515a595c9ee2cd67638b022e0663ea6_ac27c5fbb6e24c39bd1f2ce4bcbbbb34.png

【示例】绘制正弦曲线和余弦曲线

使用plt函数绘制任何曲线的第一步都是生成若干个坐标点(x,y),坐标点越多越好。取0到10之间100个等差数作为x的坐标,然后将这100个x坐标值一起传入Numpy的sin和cos函数,就会得到100个y坐标值,最后就可以使用plot函数绘制正弦曲线和余弦曲线。

# 导入matplotlib和numpy模块
import matplotlib.pyplot as plt
import numpy as np

# 生成0-10之间100个等差数列
x = np.linspace(0, 10, 100)
sin_y = np.sin(x)  # sin函数用于计算给定角度的正弦值
cos_y = np.cos(x)  # cos函数用于计算给定角度的余弦值
# 调用绘制plot方法
plt.plot(x, sin_y)  # 默认第一条曲线颜色为蓝色,第二条为橘色
plt.plot(x, cos_y)
# 保存图片
plt.savefig('正弦余弦曲线图.jpg')
# 显示绘制的图片
plt.show()

运行效果如下:

上面的示例可以看到,调用两次plot函数,会将sin和cos曲线绘制到同一个二维坐标系中,如果想绘制到两张画布中,可以调用subplot()函数将画布分区。

【示例】将画布分为区域,将图画到画布的指定区域

# 导入matplotlib和numpy模块
import matplotlib.pyplot as plt
import numpy as np

# 生成0-10之间的100个等差数列
x = np.linspace(0, 10, 100)
sin_y = np.sin(x)
cos_y = np.cos(x)
# 对画布进行分区处理, (行数, 列数, 哪个区域) 将画布分为2行2列
plt.subplot(2, 2, 1)  # 将图画在区1
# 修改x, y轴的坐标
plt.xlim(-5, 20)
plt.ylim(-2, 2)
plt.plot(x, sin_y)

plt.subplot(2, 2, 2)  # 将图画在区2
plt.plot(x, cos_y)
# 显示绘制的图片
plt.show()

运行效果如下:

5. 绘制散点图

使用scatter函数可以绘制随机点,该函数需要接收x坐标和y坐标的序列。

【示例】sin和cos函数的散点图

# 导入matplotlib和numpy模块
import matplotlib.pyplot as plt
import numpy as np

# 生成0-10之间的100个等差数列
x = np.linspace(0, 10, 100)
sin_y = np.sin(x)
cos_y = np.cos(x)
# 绘制正弦余弦图
# plt.plot(x, sin_y, 'o')  # 加一个参数'o'效果与scatter是一样的
# plt.plot(x, cos_y, 'o')
# 绘制散点图
plt.scatter(x, sin_y)
plt.scatter(x, cos_y)
# 显示绘制的图
plt.show()

运行效果如下:

【示例】使用scatter画10中大小100中颜色的散点图

# 导入matplotlib和numpy模块
import matplotlib.pyplot as plt
import numpy as np

# 创建x, y
np.random.seed(0)  # 执行多次,通过设置相同的种子,可以确保每次运行生成的随机数序列是可重复的。
x = np.random.rand(100)  # 生成100个[0, 1)之间的随机数
y = np.random.rand(100)
# 生成100种不同大小
size = np.random.rand(100) * 1000  # 乘一千扩大范围,效果跟明显
# 生成100种不同的颜色
color = np.random.rand(100)
# print(x)
# 绘制散点图
plt.scatter(x, y, s=size, c=color, alpha=0.8)  # s表示大小, c表示颜色,alpha表示透明度
plt.show()

运行效果如下:

注意:这里生成的点的大小个数和颜色个数必须要与点的个数相同。

作为线性图的替代,可以通过向 plot() 函数添加格式字符串来显示离散值。 可以使用以下格式化字符。

image.png

以下是颜色的缩写:

image.png

【示例】不同种类不同颜色的线

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 创建0-10之间的100个等差数列
x = np.linspace(0, 10, 100)
# 调用绘制plot方法
plt.plot(x, x + 0, '-g')  # 实线 绿色
plt.plot(x, x + 1, '--c')  # 虚线 浅蓝色
plt.plot(x, x + 2, '-.k')  # 点划线 黑色
plt.plot(x, x + 3, 'or')  # 圆标记 红色
plt.plot(x, x + 4, 'xy')  # 叉叉 黄色
plt.plot(x, x + 5, 'dm')  # 砖石 品红色
# 显示绘制的图
plt.show()

运行效果如下:

【示例】不同种类不同颜色的线并添加图例

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 创建0-10之间的100个等差数列
x = np.linspace(0, 10, 100)
# 调用绘制plot方法
# 给plot方法添加参数label
plt.plot(x, x + 0, '-g', label='-g')  # 实线 绿色
plt.plot(x, x + 1, '--c', label='--c')  # 虚线 浅蓝色
plt.plot(x, x + 2, '-.k', label='-.k')  # 点划线 黑色
plt.plot(x, x + 3, 'or', label='or')  # 圆标记 红色
plt.plot(x, x + 4, 'xy', label='xy')  # 叉叉 黄色
plt.plot(x, x + 5, 'dm', label='dm')  # 砖石 品红色
# 使用legend()添加图例
# 通过参数loc设置图例位置,默认在upper left左上角, fancybox边框  framealpha透明度  shadow阴影  borderpad边框宽度
plt.legend(loc='lower right', fancybox=True, framealpha=0.5, shadow=True, borderpad=1)
# 显示绘制的图
plt.show()

使用legend函数添加图例,通过参数loc设置图例位置,默认在upper left左上角, fancybox边框 framealpha透明度 shadow阴影 borderpad边框宽度。

运行效果如下:


Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-2

https://developer.aliyun.com/article/1537820

相关文章
|
6月前
|
JSON Linux 数据格式
Python模块:从入门到精通,只需一篇文章!
Python中的模块是将相关代码组织在一起的单元,便于重用和维护。模块可以是Python文件或C/C++扩展,Python标准库中包含大量模块,如os、sys、time等,用于执行各种任务。定义模块只需创建.py文件并编写代码,导入模块使用import语句。此外,Python还支持自定义模块和包,以及虚拟环境来管理项目依赖。
Python模块:从入门到精通,只需一篇文章!
|
5月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
187 8
|
5月前
|
数据可视化 Python
Matplotlib 直方图
Matplotlib 直方图
95 11
|
7月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
105 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
6月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
6月前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
201 5
|
6月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
293 5
|
7月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
67 0
|
7月前
|
数据采集 监控 数据可视化
用Python构建动态折线图:实时展示爬取数据的指南
本文介绍了如何利用Python的爬虫技术从“财富吧”获取中国股市的实时数据,并使用动态折线图展示股价变化。文章详细讲解了如何通过设置代理IP和请求头来绕过反爬机制,确保数据稳定获取。通过示例代码展示了如何使用`requests`和`matplotlib`库实现这一过程,最终生成每秒自动更新的动态股价图。这种方法不仅适用于股市分析,还可广泛应用于其他需要实时监控的数据源,帮助用户快速做出决策。
430 0

热门文章

最新文章