matplotlib-折线图

简介: matplotlib-折线图
日期:2024.03.12
内容:将matplotlib的常用方法做一个记录,方便后续查找。
  • 基本使用
# demo01
from matplotlib import pyplot as plt
# 设置图片大小,也就是画布大小
fig = plt.figure(figsize=(20,8),dpi=80)#图片大小,清晰度

# 准备数据
x = range(2,26,2)# x = list(range(2,26,2)) 这两种写法都可以
y = [15,13,14.5,17,20,25,26,26,27,22,18,15]

# 设置x和y轴的刻度
x_ticks01 = [ i for i in range(1,25)]
y_ticks01 = range(min(y),max(y) + 1)
plt.xticks(x_ticks01)
plt.yticks(y_ticks01)

# 绘图
plt.plot(x,y)

# 保存图像
plt.savefig('./test01.png')
plt.savefig('./test01.svg')

# 展示数据
plt.show()

  • 存在中文
# demo02-统计2小时内每分钟的温度情况
from matplotlib import pyplot as plt
import random

# 设置图片大小
fig = plt.figure(figsize=(20,10),dpi=80)#图片大小,清晰度

# 全局设置中文字体
plt.rcParams['font.sans-serif'] = ['Simhei']

# 准备数据
x = list(range(1,121,1))
y = [random.randint(20,25) for i in range(120)]#把random.randint(20,25)执行120次

# 设置图的标题,x轴和y轴对应的坐标信息
plt.title("时间-温度对应图(10-12点)",fontsize = 18)
plt.xlabel("时间",fontsize = 18)
plt.ylabel("温度",fontsize = 18)

# 设置x和y轴的刻度
x_ticks01 = x
x_ticks01Label = [f"9点{i}"for i in range(00,60)]
x_ticks01Label += [f"10点{i}"for i in range(00,60)]
y_ticks01 = range(min(y),max(y) + 1)
plt.xticks(x_ticks01[::10],x_ticks01Label[::10],rotation = 45,fontsize = 18)# rotation = 45 刻度逆时针旋转45°
plt.yticks(y_ticks01,fontsize = 18)

# 绘图
plt.plot(x,y)

# 展示数据
plt.show()

  • 添加图例
# demo03-如何加图例
from matplotlib import pyplot as plt
import random
# 设置图片大小
fig = plt.figure(figsize=(20,10),dpi=80)#图片大小,清晰度

# 全局设置中文字体
plt.rcParams['font.sans-serif'] = ['Simhei']
plt.rcParams.update({'font.size': 25})#设置图例字体大小

# 准备数据
x = list(range(11,31))
y1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
y2 = [1,0,1,1,2,2,1,2,1,1,1,2,1,2,1,1,1,1,1,1]

# 设置x和y轴的刻度
x_ticks01 = x
x_ticks01Label = [f"{i}岁"for i in x]
plt.xticks(x_ticks01,x_ticks01Label,rotation = 45,fontsize = 18)#rotation = 45 刻度逆时针旋转45°

# 绘图
plt.plot(x,y1,label = "中文",color = 'r',linestyle="--",linewidth = "5")
plt.plot(x,y2,label = "b")

# 将label = "a"和“b”添加到图中
plt.legend(loc='upper left')
plt.grid(0.5)#绘制网格

# 展示数据
plt.show()

相关文章
|
6月前
|
数据可视化 Python
百度搜索:蓝易云【使用Python的数据可视化库Matplotlib实现折线图教程。】
通过Matplotlib的丰富功能,你可以进一步自定义折线图,例如添加图例、设置线条样式、修改坐标轴范围等。希望这个教程对你有所帮助,如果有任何进一步的疑问,请随时提问。
173 0
|
数据可视化 数据挖掘 Python
【Python】数据分析:matplotlib折线图
【Python】数据分析:matplotlib折线图
105 0
|
数据可视化 Python
【100天精通Python】Day62:Python可视化_Matplotlib绘图基础,绘制折线图、散点图、柱状图、直方图和饼图,以及自定义图标外观和功能,示例+代码
【100天精通Python】Day62:Python可视化_Matplotlib绘图基础,绘制折线图、散点图、柱状图、直方图和饼图,以及自定义图标外观和功能,示例+代码
210 0
|
5月前
|
Python
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-2
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)
|
5月前
|
数据可视化 开发者 Python
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-1
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)
|
6月前
|
数据可视化 数据挖掘 Python
Matplotlib图表类型详解:折线图、柱状图与散点图
【4月更文挑战第17天】本文介绍了Python数据可视化库Matplotlib的三种主要图表类型:折线图、柱状图和散点图。折线图用于显示数据随时间或连续变量的变化趋势,适合多条曲线对比;柱状图适用于展示分类数据的数值大小和比较;散点图则用于揭示两个变量之间的关系和模式。通过示例代码展示了如何使用Matplotlib创建这些图表。
|
6月前
|
Python
快速上手Matplotlib(折线图)
快速上手Matplotlib(折线图)
53 1
|
开发者 Python
matplotlib画折线图、直方图、饼图、散点图等常见图形
matplotlib画折线图、直方图、饼图、散点图等常见图形
275 0
matplotlib画折线图、直方图、饼图、散点图等常见图形
|
数据可视化 Python
Matplotlib数据可视化:折线图与散点图
Matplotlib数据可视化:折线图与散点图
Matplotlib数据可视化:折线图与散点图
|
数据可视化 Python
Matplotlib基础教程之折线图
俗话说,一图胜千言。数据可视化便是将数据通过图形化的方式展现出来,它更加便于我们观察数据蕴含的的规律,洞察了数据蕴含的规律后,我们能够做更好的商业决策。
158 0
下一篇
无影云桌面