R语言对耐克NIKEID新浪微博数据K均值(K-MEANS)聚类文本挖掘和词云可视化

简介: R语言对耐克NIKEID新浪微博数据K均值(K-MEANS)聚类文本挖掘和词云可视化

全文链接:http://tecdat.cn/?p=31048


2009年8月,新浪微博(micro-blog)开始服务,随后各家微博服务在国内得到广泛传播和应用"点击文末“阅读原文”获取完整代码数据


微博具有文本信息短(140字包括标点符号)、词量少、裂变式传播、传播速度快、用词不规范等特征,使原文本可视化研究技术框架中的聚类或分类方法提取热点话题变得困难。

R语言主要用于统计分析与数据可视化,大量新兴研究领域算法不断更新,在人工智能领域有广泛的应用,R语言亦可用相对简单地完成微博可视化工作。

我们最近有一个很棒的机会与一位伟大的客户合作,要求构建一个耐克微博聚类算法。本文利用R语言完成对微博相应分析。

所要分析的数据对象为耐克nike微博热搜话题数据,数据样式如下图所示:

A_}51GN]73HN~{10KWHCIKM.png

查看数据

B%CJ[7SAZ@70H@O}XO$%179.png

文本预处理

res=pinglun1[pinglun1!=" "];

相关视频


)FCY3N{A)2AGR{7B77VKZ(H.png

)FCY3N{A)2AGR{7B77VKZ(H.png

W%0~}[%@(2FEK]D%]268D{8.png

剔除通用标题

res=gsub(pattern="NIKEiD"," ",res);   
res=gsub(pattern="http://t.cn/"," ",res); 
res=gsub(pattern="com"," ",res); 
res=gsub(pattern="耐克"," ",res); 
res=gsub(pattern="官网"," ",res); 
res=gsub(pattern="中国"," ",res);

分词+频数统计

keyword=lapply(X=res, FUN=segmentCN)
words=unlist(keyword);

绘制词汇图

library("wordcloud")
mycolors <- brewer.pal(8,"Dark2")#设置一个颜色系:
wordcloud(d$word,d$freq

{PV(JNBK{Z@3U81C4]0TI}X.png

 


点击标题查阅往期内容

MKXUJMI9O7N7I3N~Q{]4BND.png

自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据

左右滑动查看更多

01

S@R)Q`PB{[_XMZ5UKUW]D9F.png

02

{{B0VQ$T)$H2XIUGU5D_8_3.png

03

[SZATHXH$66%G{3`KP~1%TG.png

04

J%}BX}I{V$3A9RKB7N%BV3V.png



d2=data.frame(word=class2$word, freq=class2$freq);  
# 过滤掉1个字和词频小于100的记录

}[{P{M8)PNJ1~ZSJRV`1[EN.png

K均值聚类K-means

#创建聚类矩阵格式for(i in  1:nrow(cldata)){


  for(j in  unique(d$word) ){

   if(j %in%  unlist(keyword[i]))cldata[i,which(colnames(cldata) == j)]=1

 }

}



cl=kmeans(cldata,3)

聚类数据可视化

 

#cluster 1
y1=cldata[cldata$cluster==1,]
 
#cluster 2
 
y2=cldata[cldata$cluster==2,]
 
 #cluster 3
 
y3=cldata[cldata$cluster==3,]

1类词频云图

 

words=unlist(keyword[cl$cluster==1]);

(X3U9@I6JHNOV4YUO_V59O6.png

2类词频云图

 

words=unlist(keyword[cl$cluster==2]);

HO`DHU[9B{2@ZTCBBN~I}%N.png

3类词频云图

HI$H@YTI`2H[85VH96)@`ZD.png

相关文章
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
4月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
4月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
4月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
3月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
4月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
4月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。