【AI Agent系列】【阿里AgentScope框架】4. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 循环结构

简介: 【AI Agent系列】【阿里AgentScope框架】4. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 循环结构
  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


前面我们已经初步学会了使用AgentScope中的Pipeline模块,并深入源码,阅读了其中的顺序结构Pipeline和条件分支Pipeline的实现代码。今天,我们来学习另一种经典的Pipeline结构 - 循环结构Pipeline。同样深入源码,了解其背后的实现逻辑。

目前AgentScope还处于快速迭代阶段,本文源码版本为:Successfully installed agentscope-0.0.4a0

0. 推荐前置阅读

(1)Pipeline入门 & 顺序结构Pipeline源码详解:【AI Agent系列】【阿里AgentScope框架】2. Pipeline模块入门:使用Pipeline模块实现最简单的多智能体交互

(2)Pipeline基类 & 条件结构Pipeline源码详解:【AI Agent系列】【阿里AgentScope框架】3. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 顺序结构与条件分支

1. ForLoopPipeline

这个Pipeline用来实现类似编程语言中的 for 循环结构

1.1 初始化

class ForLoopPipeline(PipelineBase):
    def __init__(
        self,
        loop_body_operators: Operators,
        max_loop: int,
        break_func: Callable[[dict], bool] = lambda _: False,
    ):
        self.loop_body_operators = loop_body_operators
        self.max_loop = max_loop
        self.break_func = break_func
        self.participants = [self.loop_body_operators]
    def __call__(self, x: Optional[dict] = None) -> dict:
        return forlooppipeline(
            loop_body_operators=self.loop_body_operators,
            max_loop=self.max_loop,
            break_func=self.break_func,
            x=x,
        )

该Pipeline的初始化接收三个参数:

  • loop_body_operators:需要循环的operators
  • max_loop:最大循环次数
  • break_func:跳出循环的条件

1.2 实现原理

重写__call__函数,调用了 forlooppipeline 函数:

def forlooppipeline(
    loop_body_operators: Operators,
    max_loop: int,
    break_func: Callable[[dict], bool] = lambda _: False,
    x: Optional[dict] = None,
) -> dict:
    for _ in range(max_loop):
        # loop body
        x = _operators(loop_body_operators, x)
        # check condition
        if break_func(x):
            break
    return x  # type: ignore[return-value]

实现原理比较简单,一个for循环,for循环中为 x = _operators(loop_body_operators, x),关于 _operators函数,我们在上篇文章已经看过源码,它就是将 loop_body_operators 执行 sequentialpipeline顺序结构。

然后if break_func(x)语句,用来判断是否提前到达了停止条件,如果到达了,则直接跳出循环。

2. WhileLoopPipeline

这个Pipeline用来实现类似编程语言中的 while 循环结构。

1.1 初始化

class WhileLoopPipeline(PipelineBase):
    def __init__(
        self,
        loop_body_operators: Operators,
        condition_func: Callable[[int, dict], bool] = lambda _, __: False,
    ):
        self.condition_func = condition_func
        self.loop_body_operators = loop_body_operators
        self.participants = [self.loop_body_operators]
    def __call__(self, x: Optional[dict] = None) -> dict:
        return whilelooppipeline(
            loop_body_operators=self.loop_body_operators,
            condition_func=self.condition_func,
            x=x,
        )

该Pipeline的初始化接收两个参数:

  • loop_body_operators:需要循环的operators
  • condition_func:跳出循环的条件

1.2 实现原理

重写__call__函数,调用了 whilelooppipeline 函数:

def whilelooppipeline(
    loop_body_operators: Operators,
    condition_func: Callable[[int, Any], bool] = lambda _, __: False,
    x: Optional[dict] = None,
) -> dict:
    i = 0
    while condition_func(i, x):
        # loop body
        x = _operators(loop_body_operators, x)
        # check condition
        i += 1
    return x  # type: ignore[return-value]

实现原理也比较简单,一个while循环,进入while循环的条件是 condition_func。循环中为 x = _operators(loop_body_operators, x),即将 loop_body_operators 执行 sequentialpipeline顺序结构。

里面的 i 变量,没看懂其存在的意义是什么,只是用来计数吗?但是又没有最大循环次数设置进来,这个 i 变量也没有传递出去。

3. 总结

本文我们学习了AgentScope框架Pipeline模块中的两种循环Pipeline,其实现原理都是比较简单的,简单理解下,可以将循环内的operators理解成一系列函数,这些函数放在了for循环或while循环中。有过一点编程经验的同学相信很容易理解。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
8天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
10天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
21 3
|
11天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
56 4
|
16天前
|
存储 人工智能 SEO
全开源免费AI网址导航网站源码
Aigotools 可以帮助用户快速创建和管理导航站点,内置站点管理和自动收录功能,同时提供国际化、SEO、多种图片存储方案。让用户可以快速部署上线自己的导航站。
35 1
|
23天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
160 6
|
1月前
|
人工智能 算法 决策智能
面向软件工程的AI智能体最新进展,复旦、南洋理工、UIUC联合发布全面综述
【10月更文挑战第9天】近年来,基于大型语言模型(LLM)的智能体在软件工程领域展现出显著成效。复旦大学、南洋理工大学和伊利诺伊大学厄巴纳-香槟分校的研究人员联合发布综述,分析了106篇论文,探讨了这些智能体在需求工程、代码生成、静态代码检查、测试、调试及端到端软件开发中的应用。尽管表现出色,但这些智能体仍面临复杂性、性能瓶颈和人机协作等挑战。
82 1
|
3月前
|
存储 人工智能
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
120 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
1月前
|
机器学习/深度学习 人工智能 算法
打造你的超级Agent智能体——在虚拟迷宫中智斗未知,解锁AI进化之谜的惊心动魄之旅!
【10月更文挑战第5天】本文介绍了一个基于强化学习的Agent智能体项目实战,通过控制Agent在迷宫环境中找到出口来完成特定任务。文章详细描述了环境定义、Agent行为及Q-learning算法的实现。使用Python和OpenAI Gym框架搭建迷宫环境,并通过训练得到的Q-table测试Agent表现。此项目展示了构建智能体的基本要素,适合初学者理解Agent概念及其实现方法。
86 9
|
2月前
|
人工智能 JSON 数据格式
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
【9月更文挑战第6天】RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验

热门文章

最新文章