面向软件工程的AI智能体最新进展,复旦、南洋理工、UIUC联合发布全面综述

简介: 【10月更文挑战第9天】近年来,基于大型语言模型(LLM)的智能体在软件工程领域展现出显著成效。复旦大学、南洋理工大学和伊利诺伊大学厄巴纳-香槟分校的研究人员联合发布综述,分析了106篇论文,探讨了这些智能体在需求工程、代码生成、静态代码检查、测试、调试及端到端软件开发中的应用。尽管表现出色,但这些智能体仍面临复杂性、性能瓶颈和人机协作等挑战。

近年来,随着大型语言模型(LLMs)的快速发展,一种新型的AI智能体——基于LLM的智能体应运而生。这些智能体通过增强LLM的能力,如感知和利用外部资源和工具,显著扩展了LLM的多样性和专业性。在软件工程(SE)领域,基于LLM的智能体已经展现出了显著的成效。

近日,来自复旦大学、南洋理工大学和伊利诺伊大学厄巴纳-香槟分校的研究人员联合发布了一篇全面综述,探讨了基于LLM的智能体在软件工程中的应用。该综述收集了106篇论文,并从软件工程和智能体两个角度对这些论文进行了分类。

从软件工程的角度来看,该综述分析了基于LLM的智能体在软件开发和改进活动中的应用,包括需求工程、代码生成、静态代码检查、测试、调试以及端到端的软件开发和维护等任务。研究结果表明,基于LLM的智能体在处理这些任务时表现出了出色的性能,能够有效地提高软件开发和维护的效率和质量。

然而,基于LLM的智能体在软件工程中的应用也面临着一些挑战。首先,由于软件工程的复杂性和多样性,基于LLM的智能体可能无法完全满足所有需求。其次,基于LLM的智能体在处理大规模代码库和复杂算法时可能存在性能瓶颈。此外,基于LLM的智能体在与人类工程师的协作方面也需要进一步的优化和改进。

从智能体的角度来看,该综述重点关注了基于LLM的智能体的设计和应用。研究结果表明,基于LLM的智能体通常由四个关键组件组成:规划、记忆、感知和行动。这些组件共同构成了智能体的“大脑”,使其能够与环境进行交互并实现特定目标。

此外,该综述还探讨了多智能体系统和人机协作在软件工程中的应用。多智能体系统通过协调多个智能体之间的协作,可以解决更复杂的任务。而人机协作则可以利用人类工程师的经验和专业知识,进一步提高智能体的性能。

论文地址:https://arxiv.org/pdf/2409.02977

目录
相关文章
|
18天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
19天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
36 3
|
20天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
74 4
|
2月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
147 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
2月前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
248 6
|
2月前
|
机器学习/深度学习 人工智能 算法
打造你的超级Agent智能体——在虚拟迷宫中智斗未知,解锁AI进化之谜的惊心动魄之旅!
【10月更文挑战第5天】本文介绍了一个基于强化学习的Agent智能体项目实战,通过控制Agent在迷宫环境中找到出口来完成特定任务。文章详细描述了环境定义、Agent行为及Q-learning算法的实现。使用Python和OpenAI Gym框架搭建迷宫环境,并通过训练得到的Q-table测试Agent表现。此项目展示了构建智能体的基本要素,适合初学者理解Agent概念及其实现方法。
96 9
|
3月前
|
人工智能
防AI换脸视频诈骗,中电金信联合复旦提出多模态鉴伪法,还入选顶会ACM MM
【9月更文挑战第26天】中电金信与复旦大学合作,提出一种基于身份信息增强的多媒体伪造检测方法,并入选ACM MM国际会议。该方法利用身份信息作为检测线索,构建了含54位名人324个视频的多模态伪造数据集IDForge,设计了参考辅助的多模态伪造检测网络R-MFDN,显著提升了检测性能,准确率达到92.90%。尽管如此,该方法仍存在一定局限性,如对非英语国家数据及无明确身份信息的视频检测效果可能受限。
69 4
|
3月前
|
人工智能
AI工具:Gnomic智能体
AI工具:Gnomic智能体
53 0
|
3月前
|
人工智能 自然语言处理 API
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。这就是大型语言模型(LLM)能够做到的,比如 GPT-4,它就像是一套庞大的乐高积木套装,等待我们来发掘和搭建。
112 1
|
8天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。