Barnes-Hut t-SNE:大规模数据的高效降维算法

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Barnes-Hut t-SNE是一种针对大规模数据集的高效降维算法,它是t-SNE的变体,用于高维数据可视化。t-SNE通过保持概率分布相似性将数据从高维降至2D或3D。Barnes-Hut算法采用天体物理中的方法,将时间复杂度从O(N²)降低到O(NlogN),通过构建空间索引树和近似远距离交互来加速计算。在scikit-learn中可用,代码示例展示了如何使用该算法进行聚类可视化,成功分离出不同簇并获得高轮廓分数,证明其在大數據集上的有效性。

在数据科学和分析中,理解高维数据集中的底层模式是至关重要的。t-SNE已成为高维数据可视化的有力工具。它通过将数据投射到一个较低维度的空间,提供了对数据结构的详细洞察。但是随着数据集的增长,标准的t-SNE算法在计算有些困难,所以发展出了Barnes-Hut t-SNE这个改进算法,它提供了一个有效的近似,允许在不增加计算时间的情况下扩展到更大的数据集。

Barnes-Hut t-SNE 是一种高效的降维算法,适用于处理大规模数据集,是 t-SNE (t-Distributed Stochastic Neighbor Embedding) 的一个变体。这种算法主要被用来可视化高维数据,并帮助揭示数据中的内部结构。

基础概念

t-SNE 的基础是 SNE(Stochastic Neighbor Embedding),一种概率性降维技术,通过保持高维和低维空间中的概率分布相似来进行数据映射。而t-SNE 是由 Laurens van der Maaten 和 Geoffrey Hinton 于 2008 年提出的。它是一种非线性降维技术,非常适合于将高维数据降维到二维或三维空间中,用于数据可视化。

Barnes-Hut t-SNE 采用了在天体物理学中常用的 Barnes-Hut 算法来优化计算过程。这种算法最初是为了解决 N体问题,即计算多个物体之间相互作用的问题而设计的。

传统的 t-SNE 算法的时间复杂度约为 O(N2),而 Barnes-Hut 版本的 t-SNE 则将时间复杂度降低到 O(Nlog⁡N),这使得算法能够更加高效地处理大规模数据集。

工作原理

Barnes-Hut t-SNE改进了原来的t-SNE算法,加入了空间划分的数据结构,以降低点之间相互作用的复杂性。首先我们先简单介绍 t-SNE,因为理解 t-SNE 的基本工作原理对于理解 Barnes-Hut t-SNE 是必要的

t-SNE 的主要步骤包括:

  1. 相似度计算:在高维空间中,t-SNE 首先计算每对数据点之间的条件概率,这种概率反映了一个点选择另一个点作为其邻居的可能性。这种计算基于高斯分布,并且对于每个点会有不同的标准差(高斯分布的宽度),以保证每个点的有效邻居数大致相同。
  2. 低维映射:在低维空间(通常是 2D 或 3D)中,t-SNE 同样为数据点之间定义了一个概率分布,但这里使用的是 t 分布(自由度为1的学生 t-分布),这有助于在降维过程中避免“拥挤问题”(即多个高维点映射到相同的低维点)。
  3. 梯度下降:t-SNE 通过最小化高维和低维空间中概率分布的 Kullback-Leibler 散度来找到最佳的低维表示。这个过程通过梯度下降算法进行优化。

在处理大型数据集时,直接计算所有点对之间的相互作用非常耗时。Barnes-Hut 算法通过以下步骤优化这个过程:

  1. 构建空间索引树:在二维空间中构建四叉树,在三维空间中构建八叉树。每个节点表示一个数据点,而每个内部节点则表示它的子节点的质心(即子节点的平均位置)。
  2. 近似相互作用:在计算点之间的作用力(即梯度下降中的梯度)时,Barnes-Hut 算法不是计算每一对点之间的相互作用,而是使用树来估计远距离的影响。对于每个点,如果一个节点(或其包含的数据点的区域)距离足够远(根据预设的阈值,如节点的宽度与距离的比率),则该节点内的所有点可以被视为一个单一的质心,从而简化计算。
  3. 有效的梯度计算:通过这种近似,算法只需要计算与目标点近邻的实际点以及远处质心的影响,极大地减少了必须执行的计算量。

通过这种方法,Barnes-Hut t-SNE 将复杂度从 O(N2) 降低到 O(Nlog⁡N),使其能够有效地处理数万到数十万级别的数据点。但是这种效率的提升是以牺牲一定的精确度为代价的,因为远距离的相互作用是通过质心近似来实现的,而不是精确计算。

代码示例

Barnes-Hut t-SNE已经被集成到scikit-learn库种,所以我们直接可以拿来使用

首先我们生成一些简单的数据:

 importnumpyasnp
 importmatplotlib.pyplotasplt
 fromsklearn.manifoldimportTSNE
 fromsklearn.datasetsimportmake_blobs
 fromsklearn.model_selectionimporttrain_test_split
 fromsklearn.preprocessingimportStandardScaler
 fromsklearn.metricsimportsilhouette_score

 # Generate synthetic data
 X, y=make_blobs(n_samples=1000, centers=4, n_features=50, random_state=42)

生成4个簇,每个样本包含50个特征,总计1000个样本。

然后我们分割数据集,进行聚类

 # Split data into training and testing sets
 X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.3, random_state=42)

 # Standardize features by removing the mean and scaling to unit variance
 scaler=StandardScaler()
 X_train_scaled=scaler.fit_transform(X_train)
 X_test_scaled=scaler.transform(X_test)

 # Hyperparameter tuning for t-SNE
 best_silhouette=-1
 best_params= {}
 perplexities= [5, 30, 50, 100]  # Different perplexity values to try
 learning_rates= [10, 100, 200, 500]  # Different learning rates to try

 forperplexityinperplexities:
     forlearning_rateinlearning_rates:
         # Apply Barnes-Hut t-SNE
         tsne=TSNE(n_components=2, method='barnes_hut', perplexity=perplexity,
                     learning_rate=learning_rate, random_state=42)
         X_train_tsne=tsne.fit_transform(X_train_scaled)

         # Calculate Silhouette score
         score=silhouette_score(X_train_tsne, y_train)

         # Check if we have a new best score
         ifscore>best_silhouette:
             best_silhouette=score
             best_params= {'perplexity': perplexity, 'learning_rate': learning_rate}
             best_embedding=X_train_tsne

 # Visualization of the best t-SNE embedding
 plt.figure(figsize=(8, 6))
 plt.scatter(best_embedding[:, 0], best_embedding[:, 1], c=y_train, cmap='viridis', edgecolor='k', s=50)
 plt.title(f'Barnes-Hut t-SNE Visualization\nPerplexity: {best_params["perplexity"]}, Learning Rate: {best_params["learning_rate"]}')
 plt.colorbar(label='Cluster Label')
 plt.xlabel('t-SNE Feature 1')
 plt.ylabel('t-SNE Feature 2')
 plt.grid(True)
 plt.show()

 # Interpretations and results
 print(f"Best Silhouette Score: {best_silhouette}")
 print("Best Parameters:", best_params)
 print("Barnes-Hut t-SNE provided a clear visualization of the clusters, indicating good separation among different groups.")

我们只要在sklearn的TSNE方法种传入参数method='barnes_hut'即可。上面代码运行结果如下:

 Best Silhouette Score: 0.9504804611206055
 Best Parameters: {'perplexity': 100, 'learning_rate': 500}
 Barnes-Hut t-SNE provided a clear visualization of the clusters, indicating good separation among different groups.

可以看到:

Barnes-Hut t-SNE算法已经有效地将高维数据分离成不同的簇。轮廓分数0.95说明聚类分离良好,几乎没有重叠,这个接近1的分数表明,平均而言,数据点离它们的集群中心比离最近的不同集群的中心要近得多。

通过观察可以看到到簇内的密度各不相同。例如图中底部的某个簇(蓝色的)看起来特别紧凑,表明其点之间的相似度很高。相反顶部的另一个簇(黄色的)看起来更为分散,意味着该组内的变异更大。

没有明显的异常值远离其各自的簇,这表明原始高维空间中的簇结构定义良好。

高轮廓分数和清晰的视觉分离,可以说明我们选择的超参数(perplexity:100,学习率:500)非常适合这个数据集。这也表明算法可能已经很好地收敛,找到了一个稳定的结构,强调了簇之间的差异。

总结

Barnes-Hut t-SNE 是一种高效的数据降维方法,特别适合于处理大型和复杂的数据集,它通过引入四叉树或八叉树的结构来近似远距离作用,从而大幅减少了计算量,同时保持了良好的数据可视化质量。Barnes-Hut t-SNE优化了原始 t-SNE 算法的计算效率,使其能够在实际应用中更为广泛地使用。

https://avoid.overfit.cn/post/ec11566be83d4f4fb7cf31d09197d8e4

目录
相关文章
|
11天前
|
数据采集 机器学习/深度学习 算法
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
本文通过K-Means聚类算法对NBA球员数据进行聚类分析,旨在揭示球员间的相似性和差异性,为球队管理、战术决策和球员评估提供数据支持,并通过特征工程和结果可视化深入理解球员表现和潜力。
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
|
11天前
|
存储 算法 大数据
小米教你:2GB内存搞定20亿数据的高效算法
你好,我是小米。本文介绍如何在2GB内存中找出20亿个整数里出现次数最多的数。通过将数据用哈希函数分至16个小文件,每份独立计数后选出频次最高的数,最终比对得出结果。这种方法有效解决大数据下的内存限制问题,并可应用于更广泛的场景。欢迎关注我的公众号“软件求生”,获取更多技术分享!
80 12
|
6天前
|
编解码 算法 Linux
Linux平台下RTSP|RTMP播放器如何跟python交互投递RGB数据供视觉算法分析
在对接Linux平台的RTSP播放模块时,需将播放数据同时提供给Python进行视觉算法分析。技术实现上,可在播放时通过回调函数获取视频帧数据,并以RGB32格式输出。利用`SetVideoFrameCallBackV2`接口设定缩放后的视频帧回调,以满足算法所需的分辨率。回调函数中,每收到一帧数据即保存为bitmap文件。Python端只需读取指定文件夹中的bitmap文件,即可进行视频数据的分析处理。此方案简单有效,但应注意控制输出的bitmap文件数量以避免内存占用过高。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的伦理困境:数据隐私与算法偏见
【8月更文挑战第9天】随着深度学习技术的飞速发展,其对个人隐私和数据安全的威胁日益凸显。本文探讨了深度学习在处理敏感信息时可能导致的数据泄露风险,以及训练数据中固有偏见如何影响算法公正性的问题。文章分析了当前隐私保护措施的局限性,并提出了减少算法偏见的方法。最后,本文讨论了如何在保障技术进步的同时,确保技术应用不侵犯个人权益,呼吁建立更为全面的伦理框架以指导深度学习的发展。
|
13天前
|
数据采集 算法 数据可视化
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类
本文介绍了一个基于K-Means聚类算法的NBA球员数据分析项目,该项目通过采集和分析球员的得分、篮板、助攻等统计数据,使用轮廓系数法和拐点法确定最优聚类数,将球员分为不同群组,并提供了一个可视化界面以便直观比较不同群组的球员表现。
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类
|
24天前
knn增强数据训练
【7月更文挑战第27天】
22 10
|
17天前
|
存储 算法 定位技术
预见未来?Python线性回归算法:数据中的秘密预言家
【8月更文挑战第3天】站在数据的海洋边,线性回归算法犹如智慧的预言家,揭示着房价的秘密。作为房地产投资者,面对复杂的市场,我们可通过收集房屋面积、位置等数据并利用Python的pandas及scikit-learn库,建立线性回归模型预测房价。通过评估模型的均方根误差(RMSE),我们可以更精准地判断投资时机,让数据引领我们走向成功的彼岸。
13 1
|
22天前
knn增强数据训练
【7月更文挑战第28天】
15 2
|
27天前
|
算法 安全 网络安全
信息安全: MAC(消息认证码)算法,保护数据完整性和真实性的利器
MAC 算法在保证数据完整性和真实性方面扮演着重要角色。HMAC 和 CMAC 作为两种主要的 MAC 算法,因其高安全性和广泛应用,已经成为现代通信和数据保护中不可或缺的一部分。通过本文的介绍,希望读者能够更好地理解和使用 MAC 算法,保障信息的安全性。
|
12天前
|
算法 数据可视化 搜索推荐
基于python的k-means聚类分析算法,对文本、数据等进行聚类,有轮廓系数和手肘法检验
本文详细介绍了基于Python实现的k-means聚类分析算法,包括数据准备、预处理、标准化、聚类数目确定、聚类分析、降维可视化以及结果输出的完整流程,并应用该算法对文本数据进行聚类分析,展示了轮廓系数法和手肘法检验确定最佳聚类数目的方法。