【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例-1

简介: 【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例

原文链接:http://tecdat.cn/?p=22482

为什么要使用Boosting?

单一模型的预测往往会有缺陷,为了解决复杂的问题,我们需要集成学习通过组合多个模型来提高机器学习的预测性能。


假设给定包含猫和其他动物图像的数据集,您被要求构建一个模型,可以将这些图像分为两个单独的类。像其他人一样,您将首先使用一些规则来识别图像,如下所示:

image.png


图像有尖耳朵:图像判断为猫

图像有一个更宽的嘴结构:图像判断为狗

图像有猫形眼睛:图像判断为猫

图像有锋利的爪子:图像判断为猫

所有这些规则都可以帮助我们识别图像是狗还是猫,但是,如果我们要根据单一规则对图像进行分类,那么预测就会有缺陷。这些规则中的每一个都被单独称为弱学习器,因为这些规则不足以将图像分类为猫或狗。

因此,为了确保我们的预测更准确,我们可以通过使用多数规则或加权平均来组合来自这些弱学习器中的每一个的预测。这构成了一个强大的学习者模型。

在上面的例子中,我们定义了 4 个弱学习器,这些规则中的大多数(即 4 个学习器中有 3 个将图像预测为猫)为我们提供了预测图像是一只猫。因此,我们的最终输出是一只猫。

image.png

什么是Boosting?

Boosting 是一种集成学习技术,它使用一组机器学习算法将弱学习器转换为强学习器,以提高模型的准确性。

集成学习是一种通过组合多个学习器来提高机器学习模型性能的方法,它试图从弱分类器的数量中构建一个强分类器。它是通过串联使用弱模型来构建模型来完成的。与单一模型相比,这种类型的学习构建的模型具有更高的效率和准确性。这就是为什么使用集成方法赢得市场领先的比赛,如 Netflix 推荐比赛、Kaggle 比赛等。

image.png

AdaBoost是第一个真正成功的为二分类而开发的Boosting算法。AdaBoost是Adaptive Boosting的缩写,是一种非常流行的提升技术,它将多个“弱分类器”组合成一个“强分类器”。

image.png

上图以非常简单的方式解释了AdaBoost算法。让我们尝试逐步理解它:

模型1由10个数据点组成,它们由两种类型组成,即加号和减号,其中5个是加号,另外5个是减号,并且每个数据点最初都被分配了相同的权重。第一个模型尝试对数据点进行分类并生成一条垂直分隔线,但它错误地将3加号分类为减号。

模型2由来自先前模型的10个数据点组成,其中3个错误分类的加号被加权更多,以便当前模型尝试更多地正确分类这些加号。该模型生成了一条垂直分隔线,可以正确分类先前错误分类的加号,但在此尝试中,它错误地分类了三个减号。

模型3由来自先前模型的10个数据点组成,其中3个错误分类的减号的权重更高,因此当前模型尝试更多地正确分类这些减号。该模型生成一个水平分隔线,可以正确分类先前错误分类的减号。

模型4将模型1、模型2 和模型3 组合在一起,以构建一个比使用的任何单个模型都要好得多的强大预测模型。

boosting的利弊

与其他类型的模型相比,boosting的明显好处是它能够生成具有高预测准确性的模型。

一个潜在的缺点是拟合的提升模型很难解释。虽然它可能提供了预测新数据因变量的巨大能力,但很难解释它执行此操作的确切过程。

image.png

Boosting的种类有哪些?

Boosting 算法分为以下三种类型:

刚才提到的AdaBoost(自适应提升)算法。

梯度提升算法。

XGBoost 算法。

image.png


【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例-2

https://developer.aliyun.com/article/1489362

相关文章
|
8月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
460 3
|
9月前
|
测试技术
软件质量保护与测试(第2版)学习总结第十三章 集成测试
本文是《软件质量保护与测试》(第2版)第十三章的学习总结,介绍了集成测试的概念、主要任务、测试层次与原则,以及集成测试的不同策略,包括非渐增式集成和渐增式集成(自顶向下和自底向上),并通过图示详细解释了集成测试的过程。
168 1
软件质量保护与测试(第2版)学习总结第十三章 集成测试
|
9月前
|
前端开发 Java 程序员
springboot 学习十五:Spring Boot 优雅的集成Swagger2、Knife4j
这篇文章是关于如何在Spring Boot项目中集成Swagger2和Knife4j来生成和美化API接口文档的详细教程。
1251 1
|
9月前
|
Java Spring
springboot 学习十一:Spring Boot 优雅的集成 Lombok
这篇文章是关于如何在Spring Boot项目中集成Lombok,以简化JavaBean的编写,避免冗余代码,并提供了相关的配置步骤和常用注解的介绍。
348 0
|
9月前
|
机器学习/深度学习 算法 前端开发
集成学习任务七和八、投票法与bagging学习
集成学习任务七和八、投票法与bagging学习
170 0
|
9月前
|
机器学习/深度学习 算法
【机器学习】迅速了解什么是集成学习
【机器学习】迅速了解什么是集成学习
|
11月前
|
机器学习/深度学习 运维 算法
【阿里天池-医学影像报告异常检测】3 机器学习模型训练及集成学习Baseline开源
本文介绍了一个基于XGBoost、LightGBM和逻辑回归的集成学习模型,用于医学影像报告异常检测任务,并公开了达到0.83+准确率的基线代码。
172 9
|
12月前
|
机器学习/深度学习 算法 前端开发
集成学习的力量:Sklearn中的随机森林与梯度提升详解
【7月更文第23天】集成学习,作为机器学习中一种强大而灵活的技术,通过结合多个基础模型的预测来提高整体预测性能。在`scikit-learn`(简称sklearn)这一Python机器学习库中,随机森林(Random Forest)和梯度提升(Gradient Boosting)是两种非常流行的集成学习方法。本文将深入解析这两种方法的工作原理,并通过代码示例展示它们在sklearn中的应用。
517 10
|
11月前
|
人工智能
LLama+Mistral+…+Yi=? 免训练异构大模型集成学习框架DeePEn来了
【8月更文挑战第6天】DeePEn是一种免训练异构大模型集成学习框架,旨在通过融合多个不同架构和参数的大模型输出概率分布,提升整体性能。它首先将各模型输出映射至统一概率空间,然后进行聚合,并最终反转回单一模型空间以生成输出。实验证明,在知识问答和推理任务上,DeePEn相比单一大模型如LLaMA和Mistral有显著提升,但其效果受模型质量和数量影响,并且计算成本较高。[论文: https://arxiv.org/abs/2404.12715]
109 1
|
11月前
|
机器学习/深度学习
【机器学习】模型融合Ensemble和集成学习Stacking的实现
文章介绍了使用mlxtend和lightgbm库中的分类器,如EnsembleVoteClassifier和StackingClassifier,以及sklearn库中的SVC、KNeighborsClassifier等进行模型集成的方法。
120 1