原文链接:http://tecdat.cn/?p=26219
银行数据集
我们的数据集描述
该数据(查看文末了解数据获取方式)与银行机构的直接营销活动相关,营销活动基于电话。通常,需要与同一客户的多个联系人联系,以便访问产品(银行定期存款)是否会(“是”)或不会(“否”)订阅。
y - 客户是否订阅了定期存款?(二进制:'是','否')
我们的目标是选择最好的回归模型来让客户订阅或不订阅定期存款。我们将使用如下算法:
- 线性回归
- 随机森林回归
- KNN近邻
- 决策树
- 高斯朴素贝叶斯
- 支持向量机
选择最佳模型的决定将基于:
- 准确性
- 过采样
数据准备
在本节中,我们加载数据。我们的数据有 45211 个变量。
输入变量:
银行客户数据
1 - 年龄(数字)
2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'、'学生'、'技术员'、'失业'、'未知')
3 - 婚姻:婚姻状况(分类:'离婚'、'已婚'、'单身'、'不详';注:'离婚'指离婚或丧偶)。
4 - 教育(分类:'基础4年'、'基础6年'、'基础9年'、'高中'、'文盲'、'专业课程'、'大学学位'、'未知')
5 - 违约:是否有违约的信贷?(分类: '没有', '有', '未知')
6-住房:是否有住房贷款?(分类: '否', '是', '未知')
7 - 贷款:有个人贷款吗?
8 - contact: 联系通信类型(分类:'手机', '电话')。
9 - 月:最后一次联系的年份月份(分类:'一月', '二月', '三月', ..., '十一月', '十二月')
10 - day\_of\_week:最后一次联系的星期(分类:'mon', 'tue', 'wed', 'thu', 'fri')
11 - 持续时间:最后一次联系的持续时间,以秒为单位(数字)。
12 - 活动:在这个活动期间为这个客户进行的接触次数(数字,包括最后一次接触)。
13 - pdays: 在上次活动中最后一次与客户联系后的天数(数字,999表示之前没有与客户联系)。
14 - 以前:在这次活动之前,为这个客户进行的接触次数(数字)。
15 - 结果:上次营销活动的结果(分类:"失败"、"不存在"、"成功")。
社会和经济背景属性
16 - emp.var.rate:就业变化率--季度指标(数值)。
17 - cons.price.idx:消费者价格指数--月度指标(数值)。
18 - cons.conf.idx:消费者信心指数--月度指标(数字)。
19 - euribor3m:银行3个月利率--每日指标(数值)
20 - nr.employed: 雇员人数 - 季度指标(数字)
输出变量(所需目标):
- y - 客户是否认购了定期存款?(二进制: '是', '否')
data.head(5)
我们的下一步是查看变量的形式以及是否存在缺失值的问题。
df1 = data.dtypes df1
df2 = data.isnull().sum() df2
我们的下一步是计算所有变量的值。
data\['y'\].value_counts()
data\['job'\].value_counts()
data\['marital'\].value_counts()
data\['education'\].value_counts()
data\['housing'\].value_counts()
data\['loan'\].value_counts()
data\['contact'\].value_counts()
data\['month'\].value_counts()
data\['poutcome'\].value_counts()
描述性统计
数值总结
data.head(5)
改变因变量 y 的值。代替 no - 0 和代替 yes - 1。
data\['y'\] = data\['y'\].map({'no': 0, 'yes': 1})
data.columns
对于我们的每个变量,我们绘制一个箱线图来查看是否有任何可见的异常值。
plt.figure(figsize=\[10,25\]) ax = plt.subplot(611) sns.boxplot(data\['age'\],orient="v")
我们可以看到许多可见的异常值,尤其是在 balance 、 campaign 、 pdays 的情况下。在 pdays ,我们可以看到很多变量都在分位数范围之外。这个变量是一个特例,它被解码为 -1,这就是我们的图看起来像这样的原因。在表示变量之前的箱线图的情况下,它表示在此活动之前执行的联系数量,在这种情况下,我们还可以注意到许多超出分位数范围的值。
直方图
我们的下一步是查看连续变量的分布和直方图
我们可以看到没有一个变量具有正态分布。
plt.figure(figsize=\[10,20\]) plt.subplot(611) g = sns.distplot(data\["age"\], color="r")
我们的下一步是查看因变量 y 与每个变量或连续变量之间的关系。
g = sns.FacetGrid(data, col='y',size=4) g.map
从这些变量中我们可以得到的最有趣的观察是,大多数说不的人年龄在20-40岁之间,在月底的第20天,大多数人也拒绝了这个提议。
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-2