【python】python汽车之家数据抓取分析可视化(代码+报告+数据)【独一无二】

简介: 【python】python汽车之家数据抓取分析可视化(代码+报告+数据)【独一无二】

一、设计要求

本研究的主要目的是通过对汽车之家汽车数据抓取、数据处理和数据可视化技术,深入探索汽车行业的市场动态、价格趋势和消费者偏好,以提供有关汽车市场的有价值见解和信息。具体目标包括:


1.数据收集与清洗:使用网络抓取技术从汽车相关网站获取广泛的汽车信息,包括车型、价格、级别等。随后,对所收集的数据进行有效的清洗和预处理,以确保数据的准确性和一致性。


2.价格趋势分析:通过数据可视化,探索汽车价格与不同因素(例如车型、级别、价格区间)之间的关系和趋势。这有助于了解不同市场部分的价格变化,以及汽车价格在不同条件下的表现。


3.市场细分研究:基于抓取的数据,对汽车市场进行细分分析,包括不同价格区间内的车型数量和价格分布。这有助于识别潜在市场机会和市场细分的竞争格局。


4.消费者偏好洞察:通过数据可视化,分析消费者对不同汽车级别和价格区间的偏好。这可以为制造商提供有关产品定位和市场推广策略的有用信息。


5.洞察与策略建议:基于研究结果,提出关于汽车市场的实用见解和策略建议。这些建议可以用于制定产品定价策略、市场推广决策以及未来发展规划。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 汽车之家数据抓取 ” 获取。👈👈👈


网页内容如下:


抓取内容存储格式如下:

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 汽车之家数据抓取 ” 获取。👈👈👈


二、设计思路

网页爬虫用于从汽车之家网站上抓取关于汽车型号、级别、价格和价格区间的数据。

  1. 导入模块:
  • 代码导入了必要的模块:
  • csv:用于处理 CSV 文件。
  • requests:用于发起 HTTP 请求。
  • lxml.etree:用于解析 HTML。
  1. 函数定义:
  • write_csv(new_row):定义了一个函数,将数据行写入到 CSV 文件中。它接受一个列表(new_row)作为输入,并将其追加到名为“处理前的数据.csv”的 CSV 文件中。

 3.初始化:

  • new_row:初始化一个包含列标题的列表:‘车名’、‘级别’、‘价格’ 和 ‘价格区间’。然后将这个列表写入到 CSV 文件中。

 4.HTTP 请求和解析:

  • 对于每个构造的 URL,代码使用适当的标头发送了 HTTP GET 请求。
  • 然后,使用 XPath 表达式解析 HTML 响应,以提取车名、级别和价格等相关数据。

 5.数据提取和写入:

  • 在循环内部,代码提取了每辆车在页面上的数据。
  • 它使用 XPath 表达式提取车辆的标签、名称、级别和价格。
  • 将这些数据打印到控制台,并使用 write_csv() 函数将其写入到 CSV 文件中。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 汽车之家数据抓取 ” 获取。👈👈👈


三、分析可视化

3.1. 车名 vs 平均价格

该图表通过横轴的车名和纵轴的平均价格展示了不同车型的价格差异。每个车型对应一个条形,条形的高度表示平均价格的水平。通过这个图表,可以直观地比较不同车型之间的价格差异,从而了解不同车型的价格水平。plt.figure(figsize=(10, 5)):设置图表的大小为10x5英寸。

plt.bar(data['车名'], data['平均价格']):创建一个条形图,其中x轴是“车名”,y轴是“平均价格”。plt.xlabel("车名") 和 plt.ylabel("平均价格 (万)"):分别设置x轴和y轴的标签。plt.title("车名 vs 平均价格"):设置图表的标题。plt.xticks(rotation=45):将x轴标签旋转45度,以避免标签重叠。plt.show():显示图表。 

# 图1: 车名 vs 平均价格的条形图。
plt.figure(figsize=(10, 5))
plt.bar(data['车名'], data['平均价格'])
plt.xlabel("车名")
plt.ylabel("平均价格 (万)")
plt.title("车名 vs 平均价格")
plt.xticks(rotation=45)
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 汽车之家数据抓取 ” 获取。👈👈👈


3.2 价格区间 vs 平均价格的条形图

这个图表通过横轴的价格区间和纵轴的平均价格展示了不同价格区间内的车辆平均价格。每个价格区间对应一个条形,条形的高度表示平均价格的水平。通过这个图表,可以比较不同价格区间内车辆的平均价格,进一步了解价格区间与平均价格之间的关系。

plt.figure(figsize=(10, 5))
plt.bar(data['价格区间'], data['平均价格'])
plt.xlabel("价格区间")
plt.ylabel("平均价格 (万)")
plt.title("价格区间 vs 平均价格")
plt.xticks(rotation=45)
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 汽车之家数据抓取 ” 获取。👈👈👈


3.3 价格区间 vs 车的数量

图表展示了不同价格区间内的车辆数量。横轴表示价格区间,纵轴表示车的数量。每个价格区间对应一个条形,条形的高度表示该价格区间内的车辆数量。通过这个图表,我们可以对不同价格区间内车辆的分布情况有一个直观的了解,可以看出哪个价格区间内的车辆数量较多或较少。

调整x轴标签的角度:plt.xticks(rotation=45):这行代码将x轴的标签旋转45度。这在标签较长或者数量较多时特别有用,可以帮助避免标签之间的重叠,使得每个标签都清晰可读。

# 图4: 价格区间 vs 车的数量的条形图
plt.figure(figsize=(10, 5))
price_range_counts = data['价格区间'].value_counts()
plt.bar(price_range_counts.index, price_range_counts.values)
plt.xlabel("价格区间")
plt.ylabel("车的数量")
plt.title("价格区间 vs 车的数量")
plt.xticks(rotation=45)
plt.show()


3.4车名 vs 价格区间的条形图

该图表展示了不同车型对应的价格区间。横轴表示车名,纵轴表示价格区间。每个车型对应一个条形,条形的高度表示该车型所属的价格区间。这个图表可以帮助我们观察不同车型的价格区间分布情况。

# 图3: 车名 vs 价格区间的条形图
plt.figure(figsize=(10, 5))
plt.bar(data['车名'], data['价格区间'])
plt.xlabel("车名")
plt.ylabel("价格区间")
plt.title("车名 vs 价格区间")
plt.xticks(rotation=45)
plt.show()



👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 汽车之家数据抓取 ” 获取。👈👈👈

相关文章
|
2天前
|
Python
探索Python中的装饰器:简化代码,增强功能
【9月更文挑战第3天】在Python的世界里,装饰器是那些静悄悄站在角落、却能大大改变游戏规则的神奇工具。它们就像是给你的函数穿上一件隐形的超级英雄斗篷,让函数拥有了超乎寻常的能力。本文将带领你一探究竟,看看如何通过几行简单的代码,就能让你的函数变得更加智能和强大。
|
2天前
|
Python
Python中的装饰器:简化你的代码
【9月更文挑战第3天】装饰器,这个听起来有些神秘的名词,实际上在Python中扮演着重要的角色。它们就像是你的代码的小助手,帮你自动完成一些重复性的工作,让你的代码更加简洁、易读。本文将通过一个简单的例子,带你走进装饰器的世界,看看它们是如何工作的。
|
3天前
|
测试技术 数据安全/隐私保护 Python
Python中的装饰器:简化你的代码
【9月更文挑战第3天】装饰器在Python中是一个非常强大的工具,它可以让我们在不改变原有函数定义的情况下,对函数进行扩展,增加额外的功能。本文将通过一个简单的例子,介绍如何在Python中使用装饰器,以及如何使用装饰器来简化我们的代码。
11 6
|
1天前
|
缓存 数据挖掘 Python
探索Python中的装饰器:简化代码,提高效率
【9月更文挑战第4天】在Python的世界里,装饰器是那些隐藏在幕后、默默发挥作用的英雄。它们以优雅的姿态简化我们的代码,提升程序的可读性和效率。本文将带你揭开装饰器的神秘面纱,通过实际案例展示其魅力所在,让你的编程之旅更加顺畅。
|
2天前
|
存储 Python
Python编程入门:从零开始的代码之旅
【9月更文挑战第4天】本文将带领初学者步入Python的世界,通过简明的语言和直观的例子,逐步揭示编程的乐趣。我们将一起构建基础的数据结构,探索控制语句的奥秘,并实现简单的函数。无论你是编程新手还是希望巩固基础,这篇文章都是你理想的起点。让我们开始吧,一步步将代码块搭建成思维的宫殿!
14 2
|
3天前
|
存储 设计模式 缓存
Python中的装饰器:简化代码,提高可读性
【9月更文挑战第3天】在Python编程中,装饰器是一种强大的工具,它允许我们修改或增强函数的行为,而无需更改其源代码。通过本文,您将了解装饰器的基本概念、如何创建和使用它们,以及它们如何帮助我们编写更简洁、更可读的代码。我们将以一个简单的示例开始,逐步深入到更复杂的应用场景,展示装饰器的灵活性和强大功能。无论您是初学者还是有经验的开发者,本文都将为您提供新的视角和技巧,让您的Python代码更加优雅和高效。
|
4天前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
【9月更文挑战第2天】本文将带你深入理解Python中强大的工具——装饰器。我们将一步步从基础定义到实际应用,展示如何利用装饰器简化代码结构,增加函数功能,而无需修改原有代码。通过具体例子,你将学会创建自定义装饰器,以及如何在实际项目中有效使用它们。让我们一起开启这段简化与增强的旅程吧!
|
自然语言处理 算法 Python
|
自然语言处理 算法 索引
|
1天前
|
数据采集 机器学习/深度学习 数据挖掘
探索Python编程之美:从基础到进阶
【9月更文挑战第4天】在数字时代的浪潮中,编程已成为一种新兴的“超能力”。Python,作为一门易于上手且功能强大的编程语言,正吸引着越来越多的学习者。本文将带领读者走进Python的世界,从零基础出发,逐步深入,探索这门语言的独特魅力和广泛应用。通过具体代码示例,我们将一起解锁编程的乐趣,并理解如何利用Python解决实际问题。无论你是编程新手还是希望提升技能的开发者,这篇文章都将为你打开一扇通往高效编程的大门。
下一篇
DDNS