python爬虫去哪儿网上爬取旅游景点14万条,可以做大数据分析的数据基础

简介: 本文介绍了使用Python编写的爬虫程序,成功从去哪儿网上爬取了14万条旅游景点信息,为大数据分析提供了数据基础。

从去哪儿网上爬取旅游景点的相关信息。主要包括以下几个步骤:

  1. 导入所需的库:BeautifulSoup用于解析网页内容,pandas用于处理数据,requests用于发送网络请求,re用于正则表达式匹配。

  2. 定义函数crawer_travel_url_content(url):根据给定的URL地址发送网络请求,获取网页内容并返回BeautifulSoup对象。

  3. 定义函数removenone(mylist):移除列表中的空值。

  4. 定义函数regnum(s):从字符串中提取数值。

  5. 定义函数crawer_travel_attraction_url(url):根据给定的城市URL,获取该城市旅游景点的总数maxnum。然后根据每页10条的规则,计算出需要爬取的页数page。遍历每一页的URL,解析页面内容,并提取景点的各种信息。将提取的信息写入CSV文件中。

  6. 定义景点信息的列名数组clums

  7. 创建CSV文件,并写入列名。

  8. 读取包含城市链接的CSV文件。

  9. 遍历城市链接列表,调用crawer_travel_attraction_url(url)函数进行爬取。

主要代码如下:

def crawer\_travel\_url\_content(url):
    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'}
    req = requests.get(url, headers=headers)
    content = req.text
    bsObj = BeautifulSoup(content, 'lxml')
    return bsObj
def removenone(mylist):#移除参数中空值的函数
    while '' in mylist:
        mylist.remove('')
    return mylist
def regnum(s):#提取爬取到的字符串中的数值
    mylist = re.findall(r'\[\\d+\\.\\d\]\*', s)
    mylist = removenone(mylist)
    return mylist
def crawer\_travel\_attraction\_url(url):
    # 该城市最大景点数
    maxnum = crawer\_travel\_url\_content(url + '-jingdian').find('p', {'class': 'nav\_result'}).find('span').text
    # 提取数字
    maxnum = int(''.join(\[x for x in maxnum if x.isdigit()\]))
    print(maxnum)

    url = url + '-jingdian-1-'

    # 这里取top10景点 每页10条 page从1开始
    page = math.ceil(maxnum/10)
    if page>200:
        page=200
    else:
        page = math.ceil(maxnum/10)
    for i in range(1, page):
        url1 = url + str(i)
        bsObj = crawer\_travel\_url\_content(url1)
        dw=bsObj.find\_all('div',class\_='ct')
        dq=bsObj.find\_all('li', {'class': 'item pull'})
        if len(dq)<3:
            sheng=dq\[1\].find('a').text
            city=dq\[1\].find('a').text
        else:
            sheng = dq\[1\].find('a').text
            city = dq\[2\].find('a').text
        for i in dw:
            cat = \[\]
            name=i.find('span',class\_='cn\_tit').text
            wenzhang\_num=i.find('div',class\_="strategy\_sum").text
            pls=i.find('div',class\_="comment\_sum").text
            pf=regnum(i.find('span',class\_="cur\_star").get('style'))\[0\]
            zhanbi=i.find('span',class\_='sum').text
            jisnjir=i.find('div',class\_='desbox').text
            cat.append(sheng)
            cat.append(city)
            cat.append(maxnum)
            cat.append(name)
            cat.append(wenzhang\_num)
            cat.append(pls)
            cat.append(pf)
            cat.append(zhanbi)
            cat.append(jisnjir)
            print(sheng,city,name,wenzhang\_num,pls,pf,zhanbi,jisnjir)
            with open('去哪儿网城市景点汇总1.csv', 'a', encoding='utf-8-sig', newline='') as f:
                a = csv.writer(f)
                a.writerow(cat)
                f.close()
        print(url1+'已采集完成')
    return True
import csv
clums = \['省份', '城市','景点数','景点名','文章数','评论数','评分','占比','简介'\]
with open('去哪儿网城市景点汇总1.csv', 'w', encoding='utf-8-sig', newline='') as f:
    a = csv.writer(f)
    a.writerow(clums)
    f.close()
df=pd.read\_csv('去哪儿网城市.csv',encoding='utf-8')
for i in df\['链接'\].tolist():
    try:
        crawer\_travel\_attraction\_url(i)
    except:
        pass

运行效果:

相关文章
|
10天前
|
数据挖掘 PyTorch TensorFlow
|
4天前
|
机器学习/深度学习 数据采集 算法
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
有多种方法可以处理时间序列数据中的噪声。本文将介绍一种在我们的研究项目中表现良好的方法,特别适用于时间序列概况中数据点较少的情况。
19 1
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
|
1天前
|
机器学习/深度学习 数据挖掘 大数据
大数据时代的“淘金术”:Python数据分析+深度学习框架实战指南
在大数据时代,数据被视为新财富源泉,而从海量信息中提取价值成为企业竞争的核心。本文通过对比方式探讨如何运用Python数据分析与深度学习框架实现这一目标。Python凭借其强大的数据处理能力及丰富库支持,已成为数据科学家首选工具;而TensorFlow和PyTorch等深度学习框架则为复杂模型构建提供强有力的技术支撑。通过融合Python数据分析与深度学习技术,我们能在各领域中发掘数据的无限潜力。无论是商业分析还是医疗健康,掌握这些技能都将为企业和社会带来巨大价值。
16 6
|
2天前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
15 3
|
2天前
|
数据采集 API 开发者
🚀告别网络爬虫小白!urllib与requests联手,Python网络请求实战全攻略
在网络的广阔世界里,Python凭借其简洁的语法和强大的库支持,成为开发网络爬虫的首选语言。本文将通过实战案例,带你探索urllib和requests两大神器的魅力。urllib作为Python内置库,虽API稍显繁琐,但有助于理解HTTP请求本质;requests则简化了请求流程,使开发者更专注于业务逻辑。从基本的网页内容抓取到处理Cookies与Session,我们将逐一剖析,助你从爬虫新手成长为高手。
13 1
|
7天前
|
算法 Python
揭秘!Python数据魔术师如何玩转线性回归,让你的预测精准到不可思议
【9月更文挑战第13天】在数据科学领域,线性回归以其优雅而强大的特性,将复杂的数据关系转化为精准的预测模型。本文将揭秘Python数据魔术师如何利用这一统计方法,实现令人惊叹的预测精度。线性回归假设自变量与因变量间存在线性关系,通过拟合直线或超平面进行预测。Python的scikit-learn库提供了简便的LinearRegression类,使模型构建、训练和预测变得简单直接。
21 5
|
9天前
|
存储 算法 测试技术
预见未来?Python线性回归算法:数据中的秘密预言家
【9月更文挑战第11天】在数据的海洋中,线性回归算法犹如智慧的预言家,助我们揭示未知。本案例通过收集房屋面积、距市中心距离等数据,利用Python的pandas和scikit-learn库构建房价预测模型。经过训练与测试,模型展现出较好的预测能力,均方根误差(RMSE)低,帮助房地产投资者做出更明智决策。尽管现实关系复杂多变,线性回归仍提供了有效工具,引领我们在数据世界中自信前行。
24 5
|
9天前
|
机器学习/深度学习 数据挖掘 TensorFlow
🔍揭秘Python数据分析奥秘,TensorFlow助力解锁数据背后的亿万商机
【9月更文挑战第11天】在信息爆炸的时代,数据如沉睡的宝藏,等待发掘。Python以简洁的语法和丰富的库生态成为数据分析的首选,而TensorFlow则为深度学习赋能,助你洞察数据核心,解锁商机。通过Pandas库,我们可以轻松处理结构化数据,进行统计分析和可视化;TensorFlow则能构建复杂的神经网络模型,捕捉非线性关系,提升预测准确性。两者的结合,让你在商业竞争中脱颖而出,把握市场脉搏,释放数据的无限价值。以下是使用Pandas进行简单数据分析的示例:
23 5
|
9天前
|
存储 安全 算法
RSA在手,安全我有!Python加密解密技术,让你的数据密码坚不可摧
【9月更文挑战第11天】在数字化时代,信息安全至关重要。传统的加密方法已难以应对日益复杂的网络攻击。RSA加密算法凭借其强大的安全性和广泛的应用场景,成为保护敏感数据的首选。本文介绍RSA的基本原理及在Python中的实现方法,并探讨其优势与挑战。通过使用PyCryptodome库,我们展示了RSA加密解密的完整流程,帮助读者理解如何利用RSA为数据提供安全保障。
26 5
|
10天前
|
数据采集 数据挖掘 数据处理
使用Python和Pandas处理CSV数据
使用Python和Pandas处理CSV数据
40 5