《Python 简易速速上手小册》第9章:数据科学和机器学习入门(2024 最新版)

简介: 《Python 简易速速上手小册》第9章:数据科学和机器学习入门(2024 最新版)

29613cd8d666e2bf586e542e7f0d1b5.png

9.1 Python 在数据科学中的应用

在数据科学的奇妙世界中,Python 就像是一本充满力量的魔法书。在这一节里,我们将深入探索 Python 在数据科学中的应用,从基本的数据操作到复杂的数据分析和可视化技巧。让我们一起揭开这本魔法书的每一页!

9.1.1 数据处理与清洗

数据科学的第一步是从原始数据中提取有用信息,这就需要数据处理和清洗的技巧。

在数据科学中,数据清洗包括处理缺失值、去除重复数据、转换数据格式等步骤。Python 的 Pandas 库是这方面的绝佳工具。

示例:使用 Pandas 进行数据清洗

import pandas as pd
# 创建一个简单的DataFrame
data = pd.DataFrame({
    'Age': [25, 28, np.nan, 35, 22],
    'Gender': ['M', 'F', 'F', 'M', None]
})
# 处理缺失值
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Gender'].fillna('Unknown', inplace=True)
print(data)

这个示例中,我们使用 Pandas 处理了缺失值,用平均年龄替换了缺失的年龄,用 ‘Unknown’ 替换了缺失的性别。

9.1.2 数据分析

数据分析是解释数据以发现有用信息和支持决策的过程。

数据分析包括对数据集进行探索性分析,如计算统计量、建立相关性等。Pandas 和 NumPy 在这方面提供了强大的支持。

示例:使用 Pandas 进行基本的数据分析

# 假设data是一个Pandas DataFrame
print(data.describe())  # 获取数据的描述性统计
print(data.corr())      # 计算数据间的相关性

这里的代码展示了如何快速获取数据的描述性统计信息和相关性分析。

9.1.3 数据可视化

数据可视化是数据科学中的关键部分,它帮助我们以图形的方式理解数据。

Python 中的 Matplotlib 和 Seaborn 库是进行数据可视化的常用工具。它们可以帮助我们创建各种图表,如柱状图、线图、散点图等。

示例:使用 Matplotlib 和 Seaborn 进行数据可视化

import matplotlib.pyplot as plt
import seaborn as sns
# 使用Seaborn绘制柱状图
sns.barplot(x='Gender', y='Age', data=data)
# 显示图形
plt.show()

这个例子展示了如何使用 Seaborn 库 来创建一个简单的柱状图,展示不同性别的平均年龄。

在掌握了这些基本的数据科学技能后,你将能够更深入地理解数据,并从中提取出有价值的洞见。Python 在这一领域的强大功能,将是你在数据科学之路上的强大助力。现在,让我们一起用 Python 解锁数据的力量,开始你的数据科学之旅吧!

9.2 NumPy 和 Pandas 基础

进入 Python 数据科学的世界,NumPy 和 Pandas 是你不可或缺的双剑。它们是处理数据的超级英雄,无论你是在进行简单的数据分析还是复杂的数据操作,NumPy 和 Pandas 总能提供帮助。让我们深入了解这两个强大工具的基础知识,并通过一些示例来探索它们的使用。

9.2.1 NumPy 基础

NumPy 是 Python 中用于科学计算的基础库,它提供了一个强大的 N 维数组对象和一系列用于数值计算的函数。

NumPy 的核心功能是其多维数组对象,即 ndarray。这些数组不仅允许你进行快速的向量化计算,而且也是其他许多高级数据分析工具的基础。

示例:使用 NumPy 创建和操作数组

import numpy as np
# 创建一个NumPy数组
arr = np.array([1, 2, 3, 4, 5])
# 常见数组操作
print(arr.shape)  # 数组形状
print(arr.dtype)  # 数据类型
print(arr.mean()) # 平均值

这个示例展示了如何创建一个 NumPy 数组以及执行一些基本操作。

9.2.2 Pandas 基础

Pandas 是一个强大的数据分析和处理工具,特别适用于表格数据的操作。

Pandas 的核心是两个数据结构:Series(一维数组)和 DataFrame(二维表格)。这两种结构为数据分析提供了丰富的功能,例如数据筛选、转换和聚合等。

示例:使用 Pandas 进行数据操作

import pandas as pd
# 创建一个DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [24, 27, 22]}
df = pd.DataFrame(data)
# 基本数据操作
print(df.head())      # 查看数据头部
print(df.describe())  # 描述性统计
print(df['Age'].max()) # 获取最大年龄

这个示例中,我们创建了一个简单的 DataFrame,并展示了一些基本的数据操作。

NumPy 和 Pandas 是 Python 数据科学的核心,它们的强大功能可以帮助你轻松处理和分析各种数据。通过学习和运用这些工具,你将能够有效地解决数据处理中遇到的问题,并从数据中提取出有价值的信息。现在就开始你的数据处理之旅吧,让NumPy 和 Pandas 成为你在数据科学道路上的忠实伙伴!

9.3 简介机器学习与 Scikit-Learn

欢迎来到机器学习的奇妙世界,这是一个充满了数据、算法和预测的地方!在这一节,我们将探索机器学习的基础,并使用 Python 中著名的机器学习库 Scikit-Learn 来进行实战演练。准备好揭开机器学习的神秘面纱了吗?让我们开始这段旅程!

9.3.1 机器学习基本概念

机器学习是指教会计算机从数据中学习并做出决策或预测的技术。

  • 监督学习: 数据集包括输入数据和对应的标签,目标是训练模型以预测未见数据的标签。
  • 无监督学习: 数据集没有标签,目标是发现数据中的结构和模式。
  • 特征工程: 转换原始数据使其更适合机器学习模型。

示例:简单的线性回归模型

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import numpy as np
# 创建数据
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
# 分割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 创建模型
model = LinearRegression()
# 训练模型
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
print(predictions)

9.3.2 Scikit-Learn 的使用

Scikit-Learn 是 Python 中最流行的机器学习库之一,提供了大量的算法和工具,方便进行机器学习的实验。

Scikit-Learn 提供了统一的接口,方便进行模型的训练、预测和评估。它还包括了数据预处理、模型选择和评估指标等丰富的功能。

示例:使用 Scikit-Learn 进行分类

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 加载数据
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 分割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 创建模型
clf = RandomForestClassifier(n_estimators=100)
# 训练模型
clf.fit(X_train, y_train)
# 预测
y_pred = clf.predict(X_test)
# 评估模型
print("准确率:", accuracy_score(y_test, y_pred))

通过学习和应用 Scikit-Learn,你将能够建立、训练和评估多种类型的机器学习模型。无论你是机器学习的新手还是想要深化你的知识,Scikit-Learn 都是一个强大的工具。现在就开始你的机器学习之旅,探索数据的深层次信息吧!

目录
相关文章
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
45 2
|
1月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
41 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
2月前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
2月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
50 7
|
2月前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
55 5
|
2月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
112 3
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
192 6
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
260 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
52 14

热门文章

最新文章