R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

简介: R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

如果你正在进行统计分析:想要加一些先验信息,最终你想要的是预测。所以你决定使用贝叶斯。

但是,你没有共轭先验。你可能会花费很长时间编写 Metropolis-Hastings 代码,优化接受率和提议分布,或者你可以使用 RStan。

Hamiltonian Monte Carlo(HMC)

HMC 是一种为 MH 算法生成提议分布的方法,该提议分布被接受的概率很高。具体算法过程请查看参考文献。

打个比方:

给粒子一些动量。

它在滑冰场周围滑行,大部分时间都在密度高的地方。

拍摄这条轨迹的快照为后验分布提供了一个建议样本。

然后我们使用 Metropolis-Hastings 进行校正。

NUTS采样器(No-U-turn Sampler)

HMC,像RWMH一样,需要对步骤的数量和大小进行一些调整。

No-U-Turn Sampler "或NUTs(Hoffman和Gelman(2014)),对这些进行了自适应的优化。

NUTS建立了一组可能的候选点,并在轨迹开始自相矛盾时立即停止。

Stan 的优点

可以产生高维度的提议,这些提议被接受的概率很高,而不需要花时间进行调整。

有内置的诊断程序来分析MCMC的输出。

在C++中构建,所以运行迅速,输出到R。

示例

如何使用 LASSO 构建贝叶斯线性回归模型。

构建 Stan 模型

数据:n、p、Y、X 先验参数,超参数

参数:

模型:高斯似然、拉普拉斯和伽玛先验。

输出:后验样本,后验预测样本。

数据

int=0> n;
vectrn
n y;
rel=0> a;

参数

vetor\[p+1\] beta;
real0> siga;

转换后的参数(可选)

vectrn
n liped;
lnpred = X*bea;

模型

bta ~ dolexneial(0,w);
siga ~ gama(a,b);
或没有矢量化,
for(i in 1:n){
yi
i~noral(Xi,
i,*beta,siga);
}

生成的数量(可选)

vecor\[n\] yprict;
for(i in 1:n){
prditi
i = nrmlrng(lnprdi
i,siga);

对后验样本的每一个元素都要评估一次这个代码。

职业声望数据集

这里我们使用职业声望数据集,它有以下变量

教育:职业在职者的平均教育程度,年。

收入:在职者的平均收入,元。

女性:在职者中女性的百分比。

威望:Pineo-Porter的职业声望得分,来自一项社会调查。

普查:人口普查的职业代码。

类型:职业的类型

bc: 蓝领

prof: 专业、管理和技术

wc: 白领

在R中运行

library(rstan)
stan(file="byLASO",iter=50000)

在3.5秒内运行25000次预热和25000次采样。

第一次编译c++代码,所以可能需要更长的时间。

绘制后验分布图

par(mrow=c(1,2))
plot(denty(prs$bea)

预测分布

plot(density)

链诊断

splas\[\[1\]\[1:5,\]

链诊断

trac("beta" )

链诊断

pa(pars="beta")

更多链诊断

Stan 还可以从链中提取各种其他诊断,如置信区间、有效样本量和马尔可夫链平方误差。

链的值与各种链属性、对数似然、接受率和步长之间的比较图。

Stan 出错

stan使用的步骤太大。

可以通过手动增加期望的平均接受度来解决。

adapt_delta,高于其默认的0.8

stan(cntl = list(datta = 0.99, mxrh = 15))

这会减慢你的链的速度,但可能会产生更好的样本。

自制函数

Stan 也兼容自制函数。

如果你的先验或似然函数不标准,则很有用。

model {
beta ~ doubexp(0,w);
for(i in 1:n){
logprb(‐0.5*fs(1‐(exp(normalog(
siga))/yde));
}
}

结论

不要浪费时间编码和调整 RWMH.

Stan 运行得更快,会自动调整,并且应该会产生较好的样本。

参考文献

Alder, Berni J, and T E Wainwright. 1959. “Studies in Molecular Dynamics. I. General Method.” The Journal of Chemical Physics 31 (2). AIP: 459–66.

Hoffman, Matthew D, and Andrew Gelman. 2014. “The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Machine Learning Research 15 (1): 1593–1623.


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
14天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
38 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
67 3