PYTHON 贝叶斯概率推断序列数据概率和先验、似然和后验图可视化

简介: PYTHON 贝叶斯概率推断序列数据概率和先验、似然和后验图可视化

在这篇文章中,我将集中讨论一个给定一个短数据序列的推断概率的例子。我将首先介绍如何用贝叶斯方法进行期望推理的理论,然后在 Python 中实现该理论,以便我们能够处理这些想法。为了使文章更容易理解,我将只考虑一小组候选概率。我能够最小化推理的数学难度,同时仍然能够得到非常好的结果,包括先验、似然和后验图。

具体来说,我将考虑以下情况:

  • 计算机程序输出一个由 1和 0组成的随机字符串。例如,一个示例输出可能是:

  • 目标是推断程序用于生成 D 的 0 的概率。我们使用符号 p0 表示 0 的概率。当然这也意味着 1 的概率必须是 p1=1−p0。
  • 如上所述,我们只考虑一组候选概率。具体来说,对上面的数据序列使用候选 p0=0.2,0.4,0.6,0.8。我们如何明智地在这些概率中进行选择,以及我们对结果有多大把握?

概率

我的出发点是写出数列的概率,就好像我知道0或1的概率一样。当然,我不知道这些概率——找到这些概率是我们的目标——但这是先验的有用的地方。例如,我们的示例数据系列的概率,不需要具体说明 p0的值,可以写成:

我使用 p1=1−p0 来写出 p0的概率。我还可以以更紧凑的方式写出上述概率:

上面给出的概率的形式称为 伯努利过程 。我也可以用非常通用的方式来写这个概率,而不是具体关于数据系列 D 或概率 p0,如:

n0 和 n1 表示数据系列中 0 和 1 的数量。

通过替换相关的计数和概率,我可以将一般形式与特定示例联系起来。我首先计算上面给出的数据系列和概率的似然值:

检查结果,我发现 p0 = 0.6的可能性最大,略高于 p0 = 0.8。这里有几点需要注意:

  • 我有最大似然值(在考虑的值中)。我可以提供答案 p0=0.6 并完成。
  • 概率(似然)的总和 不是 1—— 这意味着我没有正确归一化关于 p0的概率质量函数(pmf) ,我试图推断的参数。贝叶斯推理的一个目标是为 p0 提供一个适当归一化的 pmf,称为后验。

进行上述计算的能力使我能够很好地应用贝叶斯定理并获得所需的后验 pmf。在继续讨论贝叶斯定理之前,我想再次强调似然函数的一般形式 :

写下对数似然也很有用:

因为当我在下面创建一些 Python 代码时,这种形式增加了数值稳定性。需要明确的是,我使用的是自然(以 e 为底)对数,即 loge(x)=ln(x)。

先验

我已经决定了部分先验——选择 p0∈{0.2,0.4,0.6,0.8} 作为我将考虑的一组概率。剩下的就是为每个候选 p0 分配先验概率,这样我就可以从正确归一化的先验 pmf 开始。假设先验相等,这是一种推理:

其中使用 A1表示我所做的假设。以上信息构成了先验的 pmf。

贝叶斯定理和后验

接下来,我使用 上面定义的 似然先验pmf 来推断 p0 的潜在值。也就是说,我将使用贝叶斯定理来计算 给定似然和先验的 后验pmf。后验有形式:

换句话说,这是 给定数据序列 D 和假设 A1_的_ p0  _的概率,_我可以使用贝叶斯定理计算后验:

其中先验 P(p0|A1)是红色,似然 P(D|p0) 是黑色,后验 P(p0|D,A1)是蓝色的。

这使我的 p0信息从假设(A1)更新到假设 + 数据(d,A1) :

我可以通过定义边际似然函数来简化贝叶斯定理 :

我可以将贝叶斯定理写成以下形式:

后验部分应该被看作是一组方程,对应于 p0的每个候选值,就像我们对似然和先验所做的那样。

最后,对于理论,我计算了 p0 的后验 pmf。让我们从计算依据开始(我知道上面的似然和先验的所有值):

因此,贝叶斯定理中的分母等于 9.57440e-04。现在,完成后验 pmf 计算。

第一,  

第二,  

第三,  

最后,  

回顾

在 Python 代码之前,让我们稍微回顾一下结果。使用数据和贝叶斯定理我已经从 先验的 pmf

到 后验pmf

在贝叶斯设置中,这个后验 pmf 是我们推断 p0的答案,反映了我们对给定假设和数据的参数的知识。通常人们想报告一个单一的数字,但这个后验反映了相当多的不确定性。一些选择是:

  • 报告 p0的 _最大后验_值——在本例中为 0.6。
  • 报告 后验平均值_、 _后验中位数 ——使用_后验_ pmf 进行计算。
  • 包括后验方差或置信区间来描述估计中的不确定性。

然而,报告的推论,沟通不确定性是工作的一部分。在实际操作中,后面的图确实有助于完成任务。所以,让我们离开理论,在 Python 中实现这些想法。

用 Python 编写推理代码

首先,代码导入 numpy 和 matplotlib。使用 ggplot 样式来绘图。

imprt matlli.pplt as plt
# 使用 mapltlb 样式表
try:
    pl.stye.use('gglot')

首先,我创建了一个类来处理 似然。该类接收数据序列并提供一个接口,用于计算给定概率 p0的似然。你能够在方法中找到对数似然方程(对于边际情况需要特别注意)。

class liihd:
    def \_\_int\_\_(elf,dat):
        """二进制数据"""
        slff._possa(data)
    def \_pss\_a(slf,data):
        tep = \[str(x) for x in dta\]
        for s in \['0', '1'\]:
            slf.cntss
s = emp.ount(s)
        if len(tmp) != sum(ef.conts.valus()):
            rase Exepon("!")
    def \_prcs\_pobites(self, p0):
        """处理数据."""
        n0 = slf.couts\['0'\]
        n1 = slf.conts\['1'\]
        if p0 != 0 and p0 != 1:
            # 例子
            log_dta = n0*np.og(p0) + \
                         n1*np.log(1.-p0)
            p\_daa = np.ep(opr\_dta)
        elif p0 == 0 and n0 != 0:
            # 如果不是0,p0就不是0
            lordta= -np.inf
            prta = np.exp(lor_daa)
        elif p0 == 0 and n0 == 0:
            ## 数据与 p0 = 0一致
            logpr_data = n1*np.log(1.-p0)
            prdat = np.exp(lor_dta)
        elif p0 = 1 and n1 != 0:
            # 如果 n1不是0 p0就不是1
            loprta = -np.inf
            paa = np.exp(lgpaa)
        elif p0 == 1 and n1 == 0:
            ordta = n0*np.log(p0)
            prta = np.xp(lgp_dta)
    def prb(self, p0):
        """获取数据的概率"""
        p\_at, \_ = sef.pcrbbes(p0)
        retrn prdta
    def lo_pb(sef, p0):
        """获取数据对数概率"""
        _, lp\_at = slf.p\_plie(p0)
        reurn lor_ta

接下来我为先验的 pmf创建一个类 。给定 p0 的候选值列表,默认情况下会创建一个均匀先验。如果需要其他,可以传递先验概率来覆盖此默认值。下面我举个例子。

class pri or:
    def \_\_ni\_\_(self, pls, pobs=Nne):
        """先验  
           列表: 允许的 p0’列表
           P_pos: 可选可选
可选先验概率
        """
        if p_prbs:
            # 确保先验正态
            nom = sum(p_pbs.vaes())
            sel.lopct = {p:np.log(_prbsp
p) - \
                                np.log(nrm) for p in p_lst}
        else:
            n = len(p_is)
            sef.lo\_pict = {p:-np.log(n) for p in p\_lst}
    def \_\_iter\_\_(self):
        rturn ier(sre(slf.lopit))
    def lgpob(self, p):
        """获取p 0的对数/先验概率."""
        if p in sef.ogpdt:
            return sf.og_icp
p
        else:
            return -np.inf
    def prob(slf, p):
        """获取p 0的先验概率."""
        if p in slf.gt:
            retun np.ep(sf.o_ptp
p)
        else:
            reurn 0.0

最后,我为后验构造一个类,  它采用数据和先验类的一个实例构造后验 pmf。plot() 方法提供了一个非常好的推理可视化,包括 先验似然后验的图

请注意,后验的所有计算都是使用对数概率完成的。这对于数值精度来说是绝对必要的,因为概率可能变化很大,可能非常小。

class posir:
    def \_\_it\_\_(slf, da ta, p ior):
        """数据:作为列表的数据样本
        """
        sel.lod = lklio(dta)
        lf.prr = prir
        self.possior()
    def \_pocss\_ostrior(elf):
        """使用传递的数据和先验处理后验。"""
        nuts = {}
        deniaor = -npnf
        for p in slf.prir:
            netorp
p = sef.lieioo.logrob(p) + \
                            slf.riorog_rob(p)
            if nurtsp
p != -np.inf:
                deoior = nplgxp(eoior,
                                           nersp
p)
        # 保存贝叶斯定理中的分母
        sef.lo_lielod = deoiato
        # 计算后验
        slf.ogict = {}
        for p in slf.pior:
            elf.lopctp
p = umrosp
p - \
                                slf.lmllio
    def logpob(self, p):
        """获取通过 p 的对数后验概率"""
        if p in self.loic:
            retrn self.ogdtp
p
        else:
            retrn -np.inf
    def prob(self, p):
        """获取通过的 p 的后验概率"""
        if p in sl.lo_pdit:
            rtrn np.exp(sef.lctp
p)
        else:
            rurn 0.0
    def plot(slf):
        """绘制推理结果"""
        f, ax= plt.sbs3, 1, ise=(8, 6), hae=Tre)
        # 从先验中获取候选概率
        x = \[p for p in elf.prir\]
        # 绘制先验ob(p) for p in x\])
        ax\[0\].sem y1,inf='-, meft'', bef = -')
        # 绘图似然
        ax\[1\].stem(x, y, lifm= -',aerf t=ko bafmt=w')
        # 绘图后验
        ax\[2\].tm,y3 if='b-, mmt=bo, sefm-')

例子

让我们测试一下代码。首先,我将复制我们在理论例子中所做的例子,以确保一切正常:

#数据
data1
# 先验
A1 = prior(\[0.2, 0.4, 0.6, 0.8\])
# 后验
pt1 = postior(da1, A1)
plot()

请注意后验 pmf 如何很好地表明 p0=0.6 和 p0=0.8 都有很大的概率——这里存在不确定性!这是有道理的,因为我们只有一个长度为 10 的数据系列,而且只有四个候选概率。


另外,请注意:

  • 先验和后验中所有数字的总和为 1,反映这些是合适的 pmfs。

接下来,让我们考虑设置一个强先验——偏好 p0 的一个值。使用我们的 Python 代码很容易看到这个先验对结果后验的影响:

# 先验- 将按类标准化
A2
# 后验
po2 = ptror(data, A2)
pot()

注意以下几点:

  • 后验和似然不再具有相同的形状。
  • p0=0.2,0.4 的后验概率_相对于它们的先验概率_都 下降了, 因为它们对于提供的数据序列的似然性很低。以类似的方式,p0=0.6,0.8 的后验概率_相对于它们的先验概率_有所 _增加_。

最后,让我们用更多的候选概率(这里是100)和更长的数据序列来做一个例子。

# 设置为0的概率
p0 = 0.2
# 设置 rng 种子为 4
np.andom.ed(4)
# 生成据
da2= np.roie(\[0,1\],  p=\[p0, 1.-p0\])
# 先验
A3 = pir(np.aane)
# 后验
ps3 = porir(daa2, A3)
plot()

注意几点:

  • 后验有一个很好的光滑的形状-我处理的概率看起来像是一个连续的值。
  • 注意这个数据量的似然值(y 轴)很小。

相关文章
|
23天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
19天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
80 7
|
21天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
1月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
1月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
53 3
|
21天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
20天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
8天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
101 80
|
27天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
134 59
|
7天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
33 2