R语言中的模拟过程和离散化:泊松过程和维纳过程

简介: R语言中的模拟过程和离散化:泊松过程和维纳过程

本文中,我们讨论了一个将Poisson过程与Wiener过程结合在一起的最佳算法的问题。实际上,为了生成泊松过程,我们总是习惯于模拟跳跃之间的持续时间。我们使用给定时间间隔内跳跃的均匀性,该条件取决于跳跃的次数。

首先,我们可以生成一个可能具有漂移的维纳过程,然后在其旁边,我们可以生成指数定律(这将对应于跳跃之间的时间),还可以生成跳跃幅度 。我们在这里

要么 。我们首先通过注意

其中增量是高斯(均值和方差),并且彼此独立。至于跳跃之间的持续时间,它们是独立的平均指数定律。这是代码,



n=1000
h=1/n
lambda=5
set.seed(2)
W=c(0,cumsum(rnorm(n,sd=sqrt(h))))
W=rexp(100,lambda)
N=sum(cumsum(W)<1)
T=cumsum(W[1:N])
X=-rexp(N)

问题是对于维纳过程,我们必须离散化,而对于复合泊松过程,我们不能离散化。但是,他们有相同的时间范围。第一种方法是建立trunc函数






W[trunc(n*t)+1]+sum(X[T<=t])+lambda*t

然后可视化




L=Vectorize(Lt


plot(u,L(u),type="l

 

另一种可能性是使用我在引言中提到的泊松过程的均匀性。因为泊松过程满足一个特性:如果是第i个跳跃发生的日期,则有条件基于以下事实: ,变量

对应于的订单统计 独立变量,是均匀分布

该属性可在 Wolff(1982)中找到。我们从一个(单个)跳跃开始,

 

即我们找到一个统一的分布函数。然后,我们进行2跳,3跳等迭代。

N=rpois(1,lambda)

然后,一种策略是离散化Poisson过程,与Wiener过程的时间步长相同,



indice=trunc(T*n
processus=W+cumsum(saut)+lambda*u

我们发现与以前相同的轨迹

 

通过此过程,我们不能在同一时间间隔内有两次跳跃。泊松过程的特征是

 

因此,极少有机会同时进行两次跳跃,尤其是在时间步长较小的情况下。如果我们生成数千条轨迹,那么一次出现问题的可能性就可以忽略不计。

有一个主意是采用离散均匀分布,


T=c(0,sort(sample((1:(n-1)/n),size=N,replace=FALSE)))

以避免同时发生两次跳跃。

为此,我们可以做一些测试。例如,生成一些模拟以具有一百次跳跃(因此两次跳跃之间的持续时间为一百次),然后进行指数定律检验。



VT=0
for(ns in 1:20){
N=rpois(1

我们在这里做了20个循环


lambda=5

我想进行一百次观察来进行检验。然后,我们可以进行指数拟合检验,


ks.test(VT[-1],"pexp",lambda)$p.value

如果我们重复很多次,则通过更改时间步长(或时间间隔的细分数),实际上,如果时间步长很大(在左下方),我们将通常拒绝,指数定律也是如此。但是很快,这是一个不成立的假设,

 

我们有两个不错的算法来生成莱维过程。

相关文章
|
8月前
|
机器学习/深度学习
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟-1
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
|
8月前
|
机器学习/深度学习 计算机视觉
数据分享|R语言GLM广义线性模型:逻辑回归、泊松回归拟合小鼠临床试验数据(剂量和反应)示例和自测题
数据分享|R语言GLM广义线性模型:逻辑回归、泊松回归拟合小鼠临床试验数据(剂量和反应)示例和自测题
|
8月前
|
机器学习/深度学习 人工智能 算法
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟-2
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
|
8月前
|
前端开发
数据分享|R语言零膨胀泊松回归ZERO-INFLATED POISSON(ZIP)模型分析露营钓鱼数据实例估计IRR和OR
数据分享|R语言零膨胀泊松回归ZERO-INFLATED POISSON(ZIP)模型分析露营钓鱼数据实例估计IRR和OR
|
8月前
|
数据可视化 算法 区块链
R语言泊松过程及在随机模拟应用可视化
R语言泊松过程及在随机模拟应用可视化
|
8月前
|
机器学习/深度学习 数据可视化
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享
|
8月前
|
机器学习/深度学习
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享
|
8月前
|
数据可视化 数据挖掘 定位技术
数据分享|R语言生态学种群空间点格局分析:聚类泊松点过程对植物、蚂蚁巢穴分布数据可视化
数据分享|R语言生态学种群空间点格局分析:聚类泊松点过程对植物、蚂蚁巢穴分布数据可视化
|
8月前
|
机器学习/深度学习 人工智能 算法
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
|
8月前
|
算法
R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间
R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间