数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟-2

简介: 数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟

数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟-1

https://developer.aliyun.com/article/1489380


泊松回归

计数数据的经典方法是泊松分布。

泊松分布只有一个参数,这里是 μi,这也是它的期望值。μi 的链接函数是对数,这意味着我必须将指数函数应用于线性模型才能恢复到原始比例。这是我的模型:

image.png

再说一遍,虽然我观察到的期望值是实数,但泊松分布只会产生整数,与实际销售额相符。

pos.md <- glm
display(poi.od)

image.png

Plot()
lines

image.png

这看起来很不错。系数的解释现在应该很清楚了。

从系数中我可以看出,0ºC 时,我预计会卖出 exp⁡(4.45)=94 冰淇淋,而温度每升高 1 度,预计销量会增加 exp⁡(0.076)−1=7.9% .

到现在为止还挺好。我的模型符合我的观察。此外,它不会预测负销售额,如果我使用上述模型给出的平均值从泊松分布进行模拟,我将始终只得到整数。

但是,我的模型还会预测,如果温度达到 32 摄氏度,我应该会卖出 1000 多个冰淇淋:

predict(pmod, newdata)S

image.png

二项式回归

好的,让我这样思考这个问题:我有 800 个潜在销售量,我想了解在给定温度下销售的比例。

这表明成功销售数量为 800 次的二项式分布。二项式分布的关键参数是成功概率,即有人购买我的冰淇淋的概率作为温度的函数。

因此,我需要一条将销售统计数据映射到 0 到 100% 之间的概率的 S 形曲线。

一个典型的选择是逻辑函数:

image.png S

有了这个,我的模型可以描述为:

image.png

mize <- 1000
icectunity <- marksize - icenits
display(b.glm)

image.png

binred <- predict(biglm, type="response")*marsize
basicPlot

image.png

随着温度越来越高,该模型将预测销售将达到市场饱和,而迄今为止所有其他模型都将预测越来越高的销售。

我可以使用逻辑函数的倒数来预测 0ºC 和 35ºC 时的销售额:

# 0摄氏度下的销售
plogis(coef(biglm)\[1\])*market.size

image.png

# 在35摄氏度下销售
plogis(coef(bnm)\[1\] +  coef(bglm)\[2\]\*35)\*maksie

image.png

概括

让我们将所有模型放在一张图中,温度范围为 0 到 35ºC。

p.lm <- predict
po.lm <- exp + 
                 0.5 * sumary(loim)$dispersion)
p.pis <- preict(poiso daaframe(tp=tm, type="response")
p.bn <- predict(biglm, datafrme(emptem), type="espns")*arke.ze 
baPlot

image.png

该图表显示了我的四个模型在 0ºC 到 35ºC 的温度范围内的预测。尽管线性模型在 10ºC 到 30ºC 之间看起来还可以,但它清楚地表明了它的局限性。对数变换的线性模型和泊松模型似乎给出了类似的预测,但将预测随着温度的升高,销售额将不断加速增长。我不相信这是有道理的,因为即使是最喜欢冰淇淋的人也只能在非常炎热的一天吃这么多冰淇淋。这就是为什么我会使用二项式模型来预测冰淇淋销量。

模拟

使用以分布为中心的视图来描述我的模型自然会导致模拟。如果模型很好,那么我应该无法从模拟中识别出真实数据。

在我所有的模型中,线性结构都是

image.png

或以矩阵表示法

image.png

其中 Ai,⋅=[1,xi] 和 v=[α,β],其中 A 是模型矩阵,v 是系数向量。

话虽如此,让我们模拟原始数据中测量的温度的每个分布的数据,并与实际销售单位进行比较。

n <- nrow(icre)
A <- modl.(uits ~ temp, data=cam)
set.seed(1234)
(rad.nal <- rnorm(n,
                     mean  A %*% cof(li.od),
                     sd = sqrt(sumary(liod)$esion)))

image.png

(ranlans <- rlnorm(n,
                         mnog = A %*% coef(.od),
                         sdlog =  sqrt(summary(loiod)$isin)))

image.png

(nd.ps <- rpois(n,
                   labd = exp(A %*% coef(piod))))

image.png

(ra<- rbinom(n,
                   size = meze,
                   prob = plogis(A %*% coef(b.m))))

image.png

bacPlot
cols <- adscor(c
points(iceram$tmp,  pch=19, col=cols\[1\])

image.png

该图表仅显示每个模型的一个模拟,但显示了一些有趣的方面。我不仅看到泊松和二项式模型生成整数,而高斯和对数变换的高斯预测实数,我注意到红点处对数正态分布的偏度为 19.4ºC。

此外,线性模型预测高于和低于平均值的可能性相同,在 16.4ºC 时,预测似乎有点低 - 可能是结果。

此外,对数转换和泊松模型在 25.1ºC 时的高销售额预测也不意外。

同样,二项式模型的模拟似乎是最接近现实的。

结论

我希望这篇文章能说明广义线性模型背后的直觉。

将模型拟合到数据需要的不仅仅是应用算法。特别值得思考的是:

  • 期望值的范围:它们是有界的还是范围从 -∞ 到 ∞?
  • 观察类型:我期望实数、整数还是比例?
  • 如何将分布参数与观测值联系起来
相关文章
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 资源调度 算法
R语言逻辑回归与分类模型的深度探索与应用
【8月更文挑战第31天】逻辑回归作为一种经典的分类算法,在R语言中通过`glm()`函数可以轻松实现。其简单、高效且易于解释的特点,使得它在处理二分类问题时具有广泛的应用价值。然而,值得注意的是,逻辑回归在处理非线性关系或复杂交互作用时可能表现不佳,此时可能需要考虑其他更复杂的分类模型。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
69 3
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为1
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
6月前
|
机器学习/深度学习 数据采集 算法
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
22天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。