Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据

简介: Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据

介绍

在本教程中,我们将讨论一种非常强大的优化(或自动化)算法,即网格搜索算法。它最常用于机器学习模型中的超参数调整。我们将学习如何使用Python来实现它,以及如何将其应用到实际应用程序中,以了解它如何帮助我们为模型选择最佳参数并提高其准确性。


先决条件

要遵循本教程,您应该对Python或其他某种编程语言有基本的了解。您最好也具有机器学习的基本知识,但这不是必需的。除此之外,本文是初学者友好的,任何人都可以关注。


安装

要完成本教程,您需要在系统中安装以下库/框架:


  1. Python 3
  2. NumPy
  3. Pandas
  4. Keras
  5. Scikit-Learn


它们的安装都非常简单-您可以单击它们各自的网站,以获取各自的详细安装说明。通常,可以使用pip安装软件包:


$ pip install numpy pandas tensorflow keras scikit-learn

如果遇到任何问题,请参考每个软件包的官方文档。


什么是网格搜索?

网格搜索本质上是一种优化算法,可让你从提供的参数选项列表中选择最适合优化问题的参数,从而使“试验和错误”方法自动化。尽管它可以应用于许多优化问题,但是由于其在机器学习中的使用而获得最广为人知的参数,该参数可以使模型获得最佳精度。

假设您的模型采用以下三个参数作为输入:

  1. 隐藏层数[2,4]
  2. 每层中的神经元数量[5,10]
  3. 神经元数[10,50]

如果对于每个参数输入,我们希望尝试两个选项(如上面的方括号中所述),则总计总共2 ^3 = 8个不同的组合(例如,一个可能的组合为[2,5,10])。手动执行此操作会很麻烦。

现在,假设我们有10个不同的输入参数,并且想为每个参数尝试5个可能的值。每当我们希望更改参数值,重新运行代码并跟踪所有参数组合的结果时,都需要从我们这边进行手动输入。网格搜索可自动执行该过程,因为它仅获取每个参数的可能值并运行代码以尝试所有可能的组合,输出每个组合的结果,并输出可提供最佳准确性的组合。


网格搜索实施

让我们将网格搜索应用于实际应用程序。讨论机器学习和数据预处理这一部分不在本教程的讨论范围之内,因此我们只需要运行其代码并深入讨论Grid Search的引入部分即可。

我们将使用Pima印度糖尿病数据集,该数据集包含有关患者是否基于不同属性(例如血糖,葡萄糖浓度,血压等)的糖尿病信息。使用Pandas read_csv()方法,您可以直接从在线资源中导入数据集。

以下脚本导入所需的库:

from sklearn.model_selection import GridSearchCV, KFold
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from keras.optimizers import Adam
import sys
import pandas as pd
import numpy as np

以下脚本导入数据集并设置数据集的列标题。

df = pd.read_csv(data_path, names=columns)

让我们看一下数据集的前5行:

df.head()

输出:


如你所见,这5行都是用来描述每一列的标签,因此它们对我们没有用。我们将从删除这些非数据行开始,然后将所有NaN值替换为0:

for col in columns:
    df[col].replace(0, np.NaN, inplace=True)

df.dropna(inplace=True) # Drop all rows with missing values

以下脚本将数据分为变量和标签集,并将标准化应用于数据集:

# Transform and display the training data
X_standardized = scaler.transform(X)


以下方法创建了我们简单的深度学习模型:

def create_model(learn_rate, dropout_rate):
    # Create model
    model = Sequential()
    model.add(Dense(8, input_dim=8, kernel_initializer='normal', activation='relu'))
    model.add(Dropout(dropout_rate))
    model.add(Dense(4, input_dim=8, kernel_initializer='normal', activation='relu'))
    model.add(Dropout(dropout_rate))
    model.add(Dense(1, activation='sigmoid'))

    # Compile the model
    adam = Adam(lr=learn_rate)
    model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy'])
    return model

这是加载数据集,对其进行预处理并创建您的机器学习模型所需的所有代码。因为我们只对看到Grid Search的功能感兴趣,所以我没有进行训练/测试拆分,我们将模型拟合到整个数据集。

在下一节中,我们将开始了解Grid Search如何通过优化参数使生活变得更轻松。


在没有网格搜索的情况下训练模型

在下面的代码中,我们将随机决定或根据直觉决定的参数值创建模型,并查看模型的性能:

model = create_model(learn_rate, dropout_rate)


输出:Epoch 1/1
130/130 [==============================] - 0s 2ms/step - loss: 0.6934 - accuracy: 0.6000

正如看到的,我们得到的精度是60.00%。这是相当低的。


使用网格搜索优化超参数

如果不使用Grid Search,则可以直接fit()在上面创建的模型上调用方法。但是,要使用网格搜索,我们需要将一些参数传递给create_model()函数。此外,我们需要使用不同的选项声明我们的网格,我们希望为每个参数尝试这些选项。让我们分部分进行。

首先,我们修改create_model()函数以接受调用函数的参数:

# Create the model
model = KerasClassifier(build_fn=create_model, verbose=1)

现在,我们准备实现网格搜索算法并在其上拟合数据集:

# Build and fit the GridSearchCV
grid = GridSearchCV(estimator=model, param_grid=param_grid,
                    cv=KFold(random_state=seed), verbose=10)

输出:

Best: 0.7959183612648322, using {'batch_size': 10, 'dropout_rate': 0.2, 'epochs': 10, 'learn_rate': 0.02}

在输出中,我们可以看到它为我们提供了最佳精度的参数组合。

可以肯定地说,网格搜索在Python中非常容易实现,并且在人工方面节省了很多时间。您可以列出所有您想要调整的参数,声明要测试的值,运行您的代码,而不必理会。您无需再输入任何信息。找到最佳参数组合后,您只需将其用于最终模型即可。


结论

总结起来,我们了解了什么是Grid Search,它如何帮助我们优化模型以及它带来的诸如自动化的好处。此外,我们学习了如何使用Python语言在几行代码中实现它。为了了解其有效性,我们还训练了带有和不带有Grid Search的机器学习模型,使用Grid Search的准确性提高了19%。

相关文章
|
5天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
24 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
8天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
3天前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
36 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
2天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
156 6
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
131 16
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
99 19
|
1月前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
92 7
|
1月前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
1月前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。