算法系列--动态规划--背包问题(2)--01背包拓展题目(上)

简介: 算法系列--动态规划--背包问题(2)--01背包拓展题目

💕"2024.3.28小米汽车发布"💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(2)–01背包拓展题目

大家好,今天为大家带来的是算法系列--动态规划--背包问题(2)--01背包拓展题目

1.分割等和⼦集

链接:

https://leetcode.cn/problems/partition-equal-subset-sum/

分析:

本题属于01背包问题

从数组中选择一些数据,使其刚好符合某种带限制条件的和,就符合01背包问题的思路

01背包问题就是选择一些物品,实现不超过背包最大容量的最大价值

本题是选择一些数,判断能够实现最大和刚好等于sum/2的情况

还有一个是在分析状态转移方程时,最后一个位置选或者不选也可以用01问题

代码:

class Solution {
    public boolean canPartition(int[] nums) {
        int n = nums.length;
        int sum = 0;
        for(int x : nums) sum += x;// 求和
        if(sum % 2 == 1) return false;// 特判
        int N = sum / 2;
        // 创建dp表
        boolean[][] dp = new boolean[n + 1][N + 1];
        dp[0][0] = true;// 初始化
        for(int i = 1; i <= nums.length; i++) {
            for(int j = 1; j <= sum / 2; j++) {
                dp[i][j] = (dp[i - 1][j]) 
                            || (j - nums[i - 1] >= 0 && dp[i - 1][j - nums[i - 1]]);
            }
        }
        // 返回值
        return dp[nums.length][sum / 2];
    }
}

空间优化后的代码:

class Solution {
    public boolean canPartition(int[] nums) {
        int n = nums.length, sum = 0;
        for(int x : nums) sum += x;
        if(sum % 2 == 1) return false;
        int N = sum / 2;
        boolean[] dp = new boolean[N + 1];
        dp[0] = true;
        for(int i = 1; i <= n; i++) 
            for(int j = sum / 2; j >= nums[i - 1]; j--) 
                dp[j] = dp[j] || dp[j - nums[i - 1]];
        return dp[sum / 2];
    }
}

2.⽬标和

链接:

https://leetcode.cn/problems/target-sum/

分析:

题目要求是必须用到数组里面的所有数字进行拼接(可正可负),判断可以拼接为target的最大组合数

首先,因为要用到数组中所有的数字,所以可以先把数组总和sum求出,接着我们可以把sum拆分为两部分,一部分是拼接+的数字总和a,另一部分是拼接-的总和b(b是大于0的,这里仅仅只是数字的相加),则可以得出:

  • a + b == sum
  • a - b == target

将两式相加可得:

a == (sum + target) / 2

示意图:

那么本道题就可以转化为在数组中挑选若干个数,使其和等于a的最大组合数,这不就是01背包问题吗!,在一个集合内部挑选若干个物品,在满足某个限制的前提下,实现xxxx

说明:求出a之后还需要判断是否越界,主要有两种不符合条件的情况:

  1. a < 0,因为本题的target可以是负数,所以a可能是负数,但是数组中的数全是大于0的,根部无法凑出一个小于0的数
  2. (sum + target) / 2 != 0:当除不尽的时候就代表不存在这样的a,也就无法凑出target,返回0

接下来就是动态规划的思路:

算法系列--动态规划--背包问题(2)--01背包拓展题目(下)


目录
相关文章
|
4月前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
5月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
670 1
|
5月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
404 1
贪心算法:部分背包问题深度解析
|
4月前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
12月前
|
存储 算法 Java
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
463 4
算法系列之动态规划
|
12月前
|
算法 安全 调度
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
457 0
|
4月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
309 2
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
292 3
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
235 8

热门文章

最新文章