【架构师】AI时代架构师必备技能

简介: 【架构师】AI时代架构师必备技能


👉博__主👈:米码收割机

👉技__能👈:C++/Python语言

👉公众号👈:测试开发自动化【获取源码+商业合作】

👉荣__誉👈:阿里云博客专家博主、51CTO技术博主

👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。



  1. 技术深度
  • 学习各种AI框架,如TensorFlow, PyTorch, Keras等。
  • 了解常见的机器学习算法,如决策树、SVM、神经网络、深度学习结构等。
  • 对分布式计算、高性能计算有深入的了解。
  1. 持续学习
  • 定期参加研讨会、工作坊和培训课程。
  • 订阅AI和机器学习的相关期刊和博客。
  • 与行业专家进行交流和合作。
  1. 数据敏感性
  • 理解数据的价值并知道如何从原始数据中提取有价值的信息。
  • 了解数据处理、清洗、转换的最佳实践。
  • 能够为大数据设计和优化数据库架构。
  1. 计算资源管理
  • 了解不同的计算资源,如CPU、GPU、TPU的优势和局限性。
  • 设计系统时能有效地分配和管理这些资源。
  • 对容器技术如Docker和Kubernetes有深入了解。
  1. 系统整合能力
  • 能将AI模型和解决方案与企业的ERP、CRM等系统整合。
  • 了解API设计、微服务架构和其他系统整合技术。
  1. 伦理与责任
  • 理解AI偏见、决策透明性和隐私问题。
  • 在设计和实施AI解决方案时考虑伦理和法规。
  1. 业务敏锐度
  • 深入了解所在行业的业务流程和挑战。
  • 能从业务的角度评估AI解决方案的价值。
  1. 跨领域交流
  • 能够将复杂的技术问题解释给非技术人员听。
  • 与团队中的其他成员,如数据科学家、开发者、业务分析师等建立有效的沟通。
  1. 安全意识
  • 了解AI和机器学习的安全风险。
  • 实施安全最佳实践,如数据加密、模型保护等。
  1. 灵活性与适应性
  • 在不断变化的技术环境中快速学习新技术。
  • 对变化和不确定性保持开放的态度。
  1. 创新思维
  • 鼓励和支持团队的创新想法。
  • 持续寻找新的技术和方法来提高效率和效果。
  1. 团队合作
  • 建立团队的信任和尊重。
  • 能有效地管理和指导团队,确保目标的实现。

这些技能和特质不仅会帮助架构师在AI时代中取得成功,还能确保他们能为企业创造真正的价值。


本期好书推荐《AI时代架构师修炼之道:ChatGPT让架构师插上翅膀》

架构设计新模式一本专注于帮助架构师在AI时代实现晋级、提高效率的图书书中介绍了如何使用 ChatGPT 来完成架构设计的各个环节并通过实战案例展示了ChatGPT在实际架构设计中的应用方法

关键点

1.架构设计新模式:让架构设计更高效、更快捷、更完美。

2.全流程解析:涵盖架构设计的不同应用场景,介绍从编写各种文档,到应用图形图表与UML建模、设计模式、数据库设计,再到编写代码、开发软件架构等关键环节。

3.实战检验:ChatGPT结合多种架构设计工具及案例实操讲解,理解更加透彻。

4.100%提高架构设计效率:揭秘ChatGPT与架构设计高效融合的核心方法论和实践经验。

5.超值资源:赠送教学视频及配套工具,供读者下载学习。

内容简介

本书是一本旨在帮助架构师在人工智能时代展翅高飞的实用指南。全书以ChatGPT为核心工具,揭示了人工智能技术对架构师的角色和职责进行颠覆和重塑的关键点。本书通过共计 13 章的系统内容,深入探讨AI技术在架构

设计中的应用,以及AI对传统架构师工作方式的影响。通过学习,读者将了解如何利用ChatGPT这一强大的智能辅助工具,提升架构师的工作效率和创造力。

本书的读者主要是架构师及相关从业人员。无论你是初入职场的新手架构师还是经验丰富的专业人士,本书都将成为你的指南,帮助你在人工智能时代展现卓越的架构设计能力。通过本书的指导,你将学习如何运用ChatGPT等工具和技术,以创新的方式构建高效、可靠、可扩展的软件架构。

同时,本书也适用于对架构设计感兴趣的其他技术类从业人员,如软件工程师、系统分析师、技术顾问等。通过学习本书的内容,你可以深入了解人工智能对架构设计的影响和带来的挑战,拓展自己的技术视野,提升对软件系统整体架构的理解和把握能力。

作者简介

关东升,一个在IT领域摸爬滚打20多年的老程序员、知名培训专家、畅销书作家,精通多种信息技术。曾参与设计和开发北京市公交一卡通系统、国家农产品追溯系统、金融系统微博等移动客户端项目,并在App Store发布多款游戏和应用软件。长期为中国移动、中国联通、中国南方航空、中国工商银行和天津港务局等企事业单位提供培训服务。先后出版了50多部IT图书,广受读者欢迎。


相关文章
|
20天前
|
人工智能 前端开发 编译器
【AI系统】LLVM 架构设计和原理
本文介绍了LLVM的诞生背景及其与GCC的区别,重点阐述了LLVM的架构特点,包括其组件独立性、中间表示(IR)的优势及整体架构。通过Clang+LLVM的实际编译案例,展示了从C代码到可执行文件的全过程,突显了LLVM在编译器领域的创新与优势。
41 3
|
14天前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】Kernel 层架构
推理引擎的Kernel层负责执行底层数学运算,如矩阵乘法、卷积等,直接影响推理速度与效率。它与Runtime层紧密配合,通过算法优化、内存布局调整、汇编优化及调度优化等手段,实现高性能计算。Kernel层针对不同硬件(如CPU、GPU)进行特定优化,支持NEON、AVX、CUDA等技术,确保在多种平台上高效运行。
68 32
|
14天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
45 4
【AI系统】计算图优化架构
|
1天前
|
机器学习/深度学习 人工智能 安全
并非只有AI-2025年工作技能报告
全球最大的在线学习平台Coursera发布《2025年工作技能报告》,报告基于500万企业学习者和7,000多家机构的数据分析,揭示了2025年全球劳动力所需的关键技能趋势。报告强调,随着GenAI的快速发展,相关技能的课程注册量同比增长了866%,显示出对AI能力的需求激增。
21 9
|
11天前
|
机器学习/深度学习 人工智能
一个模型走天下!智源提出全新扩散架构OmniGen,AI生图进入一键生成时代
智源研究院推出OmniGen,一种全新的扩散模型,旨在克服现有图像生成模型的局限性。OmniGen能处理文本到图像、图像编辑等多任务,具备高效、简洁的架构,仅含VAE和预训练Transformer。通过大规模统一数据集X2I训练,OmniGen展现了强大的多任务处理能力和知识转移能力,适用于虚拟试穿、图像修复等多个领域。尽管如此,OmniGen在特定任务上的性能、训练资源需求及可解释性等方面仍面临挑战。
41463 20
|
17天前
|
存储 人工智能 监控
【AI系统】推理系统架构
本文深入探讨了AI推理系统架构,特别是以NVIDIA Triton Inference Server为核心,涵盖推理、部署、服务化三大环节。Triton通过高性能、可扩展、多框架支持等特点,提供了一站式的模型服务解决方案。文章还介绍了模型预编排、推理引擎、返回与监控等功能,以及自定义Backend开发和模型生命周期管理的最佳实践,如金丝雀发布和回滚策略,旨在帮助构建高效、可靠的AI应用。
76 15
|
20天前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
62 12
存储 人工智能 自然语言处理
48 6
|
17天前
|
机器学习/深度学习 人工智能 API
【AI系统】昇腾异构计算架构 CANN
本文介绍了昇腾 AI 异构计算架构 CANN,涵盖硬件层面的达·芬奇架构和软件层面的全栈支持,旨在提供高性能神经网络计算所需的硬件基础和软件环境。通过多层级架构,CANN 实现了高效的 AI 应用开发与性能优化,支持多种主流 AI 框架,并提供丰富的开发工具和接口,助力开发者快速构建和优化神经网络模型。
37 1
|
20天前
|
机器学习/深度学习 人工智能 前端开发
【AI系统】AI 编译器基本架构
本文承接前文关于AI编译器发展的三个阶段,深入探讨通用AI编译器架构。文章首先回顾现有AI编译器架构,如PyTorch的转换流程及优化策略,然后介绍理想化的通用AI编译器架构,涵盖从前端接收多框架模型输入到后端生成特定硬件代码的全过程。重点解析了编译器的中间表达IR、前端与后端优化技术,以及现有AI编译器全栈产品的层次结构,为读者提供了全面的技术概览。
24 2
下一篇
DataWorks