白平衡相关内容,算法

简介: 色温: 讨论白平衡,就要从色温谈起,色温顾名思义就是色彩的温度,它指的是绝对黑体从绝对零度开始持续加热所呈现出来的颜色。温度升高,颜色开始从红、橙、黄、绿、蓝、靛、紫,逐渐变化。这些颜色的差异来自于不同波长光线的比例不同,色温越低,波长较长的光线比例大,红色成分就多。色温越高,波长较短的光线比例大,蓝色的成分就多。

色温:


       讨论白平衡,就要从色温谈起,色温顾名思义就是色彩的温度,它指的是绝对黑体从绝对零度开始持续加热所呈现出来的颜色。温度升高,颜色开始从红、橙、黄、绿、蓝、靛、紫,逐渐变化。这些颜色的差异来自于不同波长光线的比例不同,色温越低,波长较长的光线比例大,红色成分就多。色温越高,波长较短的光线比例大,蓝色的成分就多。


       白平衡的目的就是让物体从在不同光源下所呈现出来的颜色,恢复到物体的固有色,以达到减少色偏或者无色偏的效果 若图像中绿色较强,蓝色和红色较弱,则用了灰度世界算法后,绿色会适当减弱,蓝色和红色会适当加强,这样就使原本偏色严重的情况得到了缓解。


       该算法的优点是简单快捷,能应用于一般场景的处理,但是当图片颜色比较单一或者单一色块的面积较大时,灰度世界法不成立,处理结果会出现偏差。


        基于灰度世界假设为前提 (在一副色彩多样的图像中,最终所有颜色的平均统计值应该是一致的,也就是灰色的。)认为对于一副有大量色彩的场景,R,G,B分量的平均值趋于同一个灰度。算法大致可分为三步:


1.计算三个通道的平均灰度

2.计算三个通道的增益系数

3.原始值乘上增益系数

%%白平衡与色温紧密相关,不同色温光源下图像会呈现不同程度的偏色
%%由于人眼独特的适应性,在不同光照条件下观看物体时不会出现偏色,而就没这么先进了
%%蓝色光色温高,红色光色温低
clc;
clear all;
close all;
tic;
imgSrc = imread('E:\picture\03-work\02-imgProc\00-ISP\wb_sardmen-incorrect.jpg');
imgDst = imgSrc;
%%第一步,计算三个通道的平均灰度
imgR = imgSrc(:,:,1);
imgG = imgSrc(:,:,2);
imgB = imgSrc(:,:,3);
RAve = mean2(imgR);
GAve = mean2(imgG);
BAve = mean2(imgB);
aveGray = (RAve + GAve + BAve) / 3;
%%第二步,计算三个通道的增益系数
RCoef = aveGray / RAve;
GCoef = aveGray / GAve;
BCoef = aveGray / BAve;
%%第三步,使用增益系数来调整原始图像
RCorrection = RCoef * imgR;
GCorrection = GCoef * imgG;
BCorrection = BCoef * imgB;
imgDst(:,:,1) = RCorrection;
imgDst(:,:,2) = GCorrection;
imgDst(:,:,3) = BCorrection;
figure,subplot(1,2,1),imshow(imgSrc),title('original image');
subplot(1,2,2),imshow(imgDst),title('white balanced image');
toc;


   

       全反射理论:一幅图像中亮度最大的点就是白点, 即假设在 YCbCr 空间中Y值最大的点为白色, 以此来校正整幅图像。特点是只考虑色彩最亮的那部分, 跟上面的灰度世界理论正好相反, 在处理色彩偏单调的图像时效果好些, 但面对颜色丰富的图片时, 因为最亮的点不一定是白色的, 可能会出现偏色的情况


       完美反射算法基本原理:假设图像中最亮的点就是白点,并以此白点为参考对图像进行自动白平衡,最亮点定义为R+G+B的最大值。


       算法步骤:计算每个像素点的R+G+B之和并保存;按照值的大小计算出其前10%或其他比例的白色参考点阈值T;遍历图像计算其中R+G+B值大于T的所有点的R、G、B分量的累积和的平均值;将每个像素量化到[0,255]。


       完美反射算法优点是比灰度世界算法稍好,但是依赖比例值的选取,并且对亮度最亮区域不是白色的图像效果不佳。


             

%% 完美反射法
clear all
close all
clc
% 输入图像(存在颜色偏差的原始图像)
I=im2double(imread('Test.jpg'));
% 分离各个通道
R=I(:,:,1);     G=I(:,:,2);    B=I(:,:,3);
% 计算每个RGB灰度值之和
sumRGB=R+G+B;
% 将RGB值的大小进行排序
sumsort=sort(sumRGB(:)');
count=round(size(sumsort,2)*0.9);
T=sumsort(count);
index=sumRGB>T;
KR=max(R(:))/mean(R(index));
KG=max(G(:))/mean(G(index));
KB=max(B(:))/mean(B(index));
R1=R*KR;G1=G*KG;B1=B*KB;
out=cat(3,R1,G1,B1);
figure;imshow([I out]);


相关文章
|
算法 C++
OpenCV-白平衡(完美反射算法)
OpenCV-白平衡(完美反射算法)
445 0
|
算法 C++
OpenCV-白平衡(灰度世界算法)
OpenCV-白平衡(灰度世界算法)
405 0
|
算法 计算机视觉
OpenCV3 自动白平衡:灰度世界和完美反射算法
最近加入了一个无人机团队,任务是参加第六届国际无人机飞行器创新大奖赛(UAVGP)。由于需要跑视觉算法,团队买了块英伟达的TX2(壕...)。我做的方案是用色域分割,但是室外环境变化可能会比较大(冷暖,亮暗),所以需要用到白平衡算法让图片直方图保持正常。
4867 0
|
16天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
22天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
18天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
下一篇
DataWorks