机器学习PAI常见问题之将MaxCompute方法设置成永久如何解决

简介: PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。

问题一:机器学习PAI实时训练在MaxCompute上拉起训练 这是新建一个怎样的任务啊? 调度怎样配啊?


机器学习PAI实时训练在MaxCompute上拉起训练

这是新建一个怎样的任务啊?

调度怎样配啊?


参考回答:

参考此文档https://easyrec.readthedocs.io/en/latest/online_train.html


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/598029


问题二:机器学习PAI实时训练的export怎么做的啊?


机器学习PAI实时训练的export怎么做的啊?


参考回答:

在机器学习PAI实时训练中,导出模型通常涉及到将训练好的模型保存并转移到其他位置,例如上传到OSS(对象存储服务)等。以下是进行模型导出的一般步骤:

  1. 配置模型导出:您需要通过SQL脚本或DataWorks的ODPS SQL节点来执行PAI命令,配置模型导出的相关参数。这些参数包括模型的格式、重命名、是否覆盖以及目标OSS路径等。
  2. 执行导出操作:在PAI平台上,根据提供的组件和命令,执行模型导出操作。这通常涉及到指定模型的名称、项目名称以及目标存储路径等信息。
  3. 确认模型导出:导出完成后,您可以在指定的OSS路径中查看模型文件,确认模型是否已经成功导出。
  4. 部署模型:如果您需要将模型用于实时预测,可以使用机器学习模型在线部署功能,将模型一键部署为Restful API,然后通过HTTP请求的方式进行调用。
  5. 测试模型:部署完成后,进行必要的测试,确保模型能够正确响应API请求并返回预测结果。

总之,在进行模型导出和部署的过程中,请确保您有足够的权限访问相关的存储服务和API接口。此外,根据您的具体需求,可能还需要进行额外的配置和优化,以确保模型的性能和稳定性。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/598030


问题三:机器学习PAI有沒有非在線類的ML案例該如何運用FeatureStore嗎?


机器学习PAI有沒有非在線類的ML案例該如何運用FeatureStore嗎?

比方說, 我想用XGBoost訓練一個簡單的離線Classifier, 所以我的data不用real time,也不用online,有案例分享嗎?


参考回答:

当然可以。尽管阿里云机器学习PAI FeatureStore 主要设计用于实时和在线机器学习场景,但它同样适用于离线训练场景。在离线机器学习场景中,我们可以通过FeatureStore有效地管理和组织特征数据,以供离线训练时使用。以下是一个简化的例子,描述如何在离线环境中使用PAI FeatureStore:

  1. 数据摄取与特征注册
  • 将历史数据或离线数据导入到PAI FeatureStore中。这一步可以通过DataWorks、DataHub等工具完成数据的清洗、转换和加载。
  • 注册所需的特征,将原始数据中的关键特征字段映射到FeatureStore中,方便后续抽取和组合。
  1. 特征集构建
  • 在FeatureStore中定义特征集(Feature Groups),将相关的特征字段组合在一起,形成可供训练使用的特征集合。
  1. 特征查询与特征工程
  • 在进行离线训练之前,使用PAI FeatureStore API 或者配套工具查询所需的特征数据,根据训练批次或时间窗口获取特征集。
  • 如果需要进行特征衍生或特征工程,可以在获取特征数据之后,在本地或者PAI Notebook中完成,然后合并成训练所需的完整特征数据集。
  1. 模型训练
  • 使用XGBoost或其他机器学习框架,结合从FeatureStore获取的离线特征数据进行分类器模型的训练。
  1. 模型评估与迭代
  • 训练结束后,评估模型性能,如果需要进行模型迭代,可以根据反馈再次从FeatureStore获取新的特征数据或调整特征工程策略。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/598270


问题四:机器学习PAI中MaxCompute有方法成為永久的嗎?


机器学习PAI中MaxCompute作為Store是有Life time days, 有方法成為永久的嗎?


参考回答:

在阿里巴巴的机器学习平台PAI(Platform of Artificial Intelligence)中,MaxCompute(原名ODPS,Open Data Processing Service)是一个用于大数据处理的计算服务。在MaxCompute中,数据通常存储在表(Table)中,而这些表可以有一个生命周期(Life Time),即数据在存储一定时间后可能会被自动删除。

生命周期的设置是为了管理存储空间和避免不必要的数据积累。然而,如果你希望某些数据在MaxCompute中是永久的,即不受生命周期的影响,你可以采取以下策略:

  1. 不设置生命周期:对于不希望被自动删除的数据表,你可以不为其设置生命周期。这样,数据将一直保持在MaxCompute中,直到你显式地删除它。
  2. 使用归档存储:MaxCompute提供了归档存储的功能,允许你将不再频繁访问但需要长期保存的数据移动到成本更低的存储中。这样,你可以既节省存储成本,又确保数据不会因生命周期而被删除。
  3. 定期备份数据:如果你担心数据丢失,可以定期将数据从MaxCompute导出并存储在其他地方(如本地文件系统、对象存储等)。这样,即使MaxCompute中的数据因生命周期或其他原因被删除,你仍然可以从备份中恢复。
  4. 使用其他持久化存储解决方案:如果你需要更高级别的数据持久性和管理功能,可以考虑使用其他的数据存储解决方案,如分布式文件系统(如HDFS)或对象存储服务(如阿里云OSS)。这些服务通常提供更灵活的数据管理选项,包括数据生命周期管理和数据备份。

请注意,长期存储大量数据可能会产生显著的成本,因此在决定如何管理你的数据时,务必考虑存储成本和业务需求之间的平衡。同时,定期审查和更新你的数据管理策略也是一个好习惯,以确保它始终与你的业务目标保持一致。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/598271


问题五:机器学习PAI中FeatureStore支持特征transform吗?


机器学习PAI中FeatureStore支持特征transform吗?比如频次这个特征,我需要对它做一些映射处理逻辑,FeatureStore提供这种Transformer逻辑吗?


参考回答:

FeatureStore作为PAI产品中心化的数据管理和共享平台,主要用于组织、存储和管理机器学习和AI训练中使用的特征数据。对于您提到的特征transform(特征转换或特征变换)的需求,FeatureStore确实支持这一功能。

特征转换是机器学习流程中的一个重要环节,它涉及到对原始特征数据进行处理、映射或转换,以得到更适合模型训练的特征。在FeatureStore中,您可以对特征进行各种转换操作,包括但不限于频次特征的映射处理逻辑。

具体来说,您可以使用FeatureStore提供的Transform功能来对特征进行转换。例如,对于频次特征,您可以使用FeatureStore提供的API或工具来定义映射处理逻辑,并将其应用于该特征。这样,FeatureStore将按照您定义的逻辑对频次特征进行转换,并生成新的特征数据供您使用。

需要注意的是,FeatureStore提供的特征转换功能可能因版本或具体实现而有所不同。因此,建议您查阅PAI的官方文档或相关资源,以获取更详细和准确的信息,并了解如何在您的具体环境中使用FeatureStore进行特征转换。

总的来说,机器学习PAI中的FeatureStore支持特征transform,并允许您对特征进行自定义的转换操作,以满足您的机器学习需求。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/598272

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
5月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
446 8
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
469 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1425 6
|
机器学习/深度学习 数据采集 算法
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
本文围绕 Java 大数据机器学习模型在金融衍生品定价中的应用展开,分析定价现状与挑战,阐述技术原理与应用,结合真实案例与代码给出实操方案,助力提升金融衍生品定价的准确性与效率。
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
|
10月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
601 0
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
2307 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
805 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
617 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
526 6

相关产品

  • 人工智能平台 PAI