如何使用Python的Pandas库进行数据透视图(melt/cast)操作?

简介: Pandas的`melt()`和`pivot()`函数用于数据透视。基本步骤:导入pandas,创建DataFrame,然后使用这两个函数转换数据格式。示例代码展示了如何通过`melt()`转为长格式,再用`pivot()`恢复为宽格式。输入数据是包含'Name'和'Age'列的DataFrame,最终结果经过转换后呈现出不同的布局。

Pandas库提供了melt()pivot()函数,用于进行数据透视图操作。

以下是使用Pandas进行数据透视图操作的基本步骤:

  1. 导入pandas库。
  2. 创建或加载DataFrame。
  3. 使用melt()pivot()函数进行数据透视图操作。

以下是具体的代码示例:

# 导入pandas库
import pandas as pd

# 创建DataFrame
data = {
   'Name': ['Tom', 'Nick', 'John', 'Tom'], 'Age': [20, 21, 19, 18]}
df = pd.DataFrame(data)

# 使用melt()函数进行数据透视图操作
melted_df = pd.melt(df, id_vars=['Name'], value_vars=['Age'])
print(melted_df)

# 使用pivot()函数进行数据透视图操作
pivoted_df = melted_df.pivot(index='Name', columns='variable', values='value')
print(pivoted_df)

在这个例子中,我们首先创建了一个包含两列('Name'和'Age')的DataFrame。然后,我们使用melt()函数将宽格式的数据转换为长格式,再使用pivot()函数将长格式的数据转换为宽格式。

相关文章
|
6天前
|
Python
如何使用Python的Pandas库进行数据透视图(melt/cast)操作?
Pandas的`melt()`和`pivot()`函数用于数据透视。基本步骤:导入pandas,创建DataFrame,然后使用这两个函数变换数据。示例代码:导入pandas,定义一个包含'Name'和'Age'列的DataFrame,使用`melt()`转为长格式,再用`pivot()`恢复为宽格式。
31 1
|
6天前
|
数据处理 Python
如何使用Python的Pandas库进行数据排序和排名
【4月更文挑战第22天】Pandas Python库提供数据排序和排名功能。使用`sort_values()`按列进行升序或降序排序,如`df.sort_values(by='A', ascending=False)`。`rank()`函数用于计算排名,如`df['A'].rank(ascending=False)`。多列操作可传入列名列表,如`df.sort_values(by=['A', 'B'], ascending=[True, False])`和分别对'A'、'B'列排名。
24 2
|
6天前
|
存储 Python
使用Pandas库对非数值型数据进行排序和排名
在Pandas中,支持对非数值型数据排序和排名。可按以下方法操作:1) 字符串排序,使用`sort_values()`,如`sorted_df = df.sort_values(by='Name', ascending=False)`进行降序排序;2) 日期排序,先用`to_datetime()`转换,再排序,如`sorted_df = df.sort_values(by='Date')`;3) 自定义排序,结合`argsort()`和自定义规则。
27 2
|
6天前
|
索引 Python
如何使用Python的Pandas库进行数据合并和拼接?
Pandas的`merge()`函数用于数据合并,如示例所示,根据'key'列对两个DataFrame执行内连接。`concat()`函数用于数据拼接,沿轴0(行)拼接两个DataFrame,并忽略原索引。
40 2
|
6天前
|
数据挖掘 索引 Python
如何在Python中,Pandas库实现对数据的时间序列分析?
【4月更文挑战第21天】Pandas在Python中提供了丰富的时间序列分析功能,如创建时间序列`pd.date_range()`,转换为DataFrame,设置时间索引`set_index()`,重采样`resample()`(示例:按月`'M'`和季度`'Q'`),移动窗口计算`rolling()`(如3个月移动平均)以及季节性调整`seasonal_decompose()`。这些工具适用于各种时间序列数据分析任务。
20 2
|
6天前
|
存储 JSON 数据处理
从JSON数据到Pandas DataFrame:如何解析出所需字段
从JSON数据到Pandas DataFrame:如何解析出所需字段
19 1
|
3天前
|
数据采集 监控 数据可视化
Pandas平滑法时序数据
【5月更文挑战第17天】本文介绍了使用Python的Pandas库实现指数平滑法进行时间序列预测分析。指数平滑法是一种加权移动平均预测方法,通过历史数据的加权平均值预测未来趋势。文章首先阐述了指数平滑法的基本原理,包括简单指数平滑的计算公式。接着,展示了如何用Pandas读取时间序列数据并实现指数平滑,提供了示例代码。此外,文中还讨论了指数平滑法在实际项目中的应用,如销售预测和库存管理,并提到了在`statsmodels`库中使用`SimpleExpSmoothing`函数进行模型拟合和预测。最后,文章强调了模型调优、异常值处理、季节性调整以及部署和监控的重要性,旨在帮助读者理解和应用这一方法
11 2
 Pandas平滑法时序数据
|
6天前
|
数据挖掘 数据处理 索引
使用Pandas从Excel文件中提取满足条件的数据并生成新的文件
使用Pandas从Excel文件中提取满足条件的数据并生成新的文件
8 1
|
6天前
|
数据采集 数据处理 索引
如何使用 Pandas 删除 DataFrame 中的非数字类型数据?
如何使用 Pandas 删除 DataFrame 中的非数字类型数据?
29 3
|
6天前
|
存储 数据挖掘 数据处理
使用pandas高效读取筛选csv数据
本文介绍了使用Python的Pandas库读取和处理CSV文件。首先,确保安装了Pandas,然后通过`pd.read_csv()`函数读取CSV,可自定义分隔符、列名、索引等。使用`head()`查看数据前几行,`info()`获取基本信息。Pandas为数据分析提供强大支持,是数据科学家的常用工具。
23 0