Python数据分析(三)—— Pandas数据统计

简介: Python数据分析(三)—— Pandas数据统计


本文主要介绍Pandas中的数据统计方法,部分使用的数据集为MovieLen 1M版本(m1-1m.zip)数据集。

import numpy as np
import pandas as pd
#加载数据集
fpath = r'datasets//'
usercol = ['uid','sex','age','occupation','zip']
ratcol = ['uid','mid','rating','timestamp']
movcol = ['mid','title','genres']
users = pd.read_table(fpath+'users.dat',sep='::',header=None, names=usercol,engine='python')
ratings = pd.read_table(fpath+'ratings.dat',sep='::',header=None, names=ratcol,engine='python')
movies = pd.read_table(fpath+'movies.dat',sep='::',header=None,names=movcol,engine='python')
data = pd.merge(pd.merge(users,ratings),movies)

1 简单统计

unique计算Series中的唯一值数组,按发现的顺序返回。

value_counts返回一个Series,索引为唯一值,值为频率,按计数值降序排列。

data.age.unique()

data.age.value_counts()

2 groupby

分组运算的过程被描述为split-apply-combine:数据根据提供的一个或多个键被拆分(split)为多组,拆分操作在对象的特定轴上执行的;然后将一个函数应用(apply)到各个分组并产生一个新值;最后所有函数的执行结果会被合并(combine)到最终的结果对象中。

import pandas as pd 
import numpy as np
df = pd.DataFrame({'col1':['a','a','b','b','a'],
                   'col2':['one','two','one','two','one'],
                   'data1': np.random.randn(5),
                   'data2': np.random.randn(5)})
df

groupby方法形成一个Groupby对象,没有进行任何实际计算,只是含有一些有关分组键的中间数据,即该对象已包含接下来对各分组执行运算所需的一切信息。

grouped = df.groupby(['col1','col2'])
grouped.mean()

3 pivot table

透视表(pivot table)根据一个或多个键对数据进行聚合,并根据行和列上的分组键将数据分配到各个矩形区域中。pivot_table()函数除能为groupby提供便利外,还可以添加分项小计(margins)。

pivot_table(values,index,columns,aggfunc,fill_value)

主要参数如下:

  • values:数据透视表中的值
  • index:数据透视表中的行
  • columns:数据透视表中的列
  • aggfunc:统计函数(应用到values上)
  • fill_value:替换NA值
df.pivot_table(index='col1',aggfunc='mean')
#df.groupby(['col1']).mean()

df.pivot_table('data1',index='col1',aggfunc='mean')
#df.groupby(['col1']).data1.mean()

df.pivot_table(['data1','data2'],index='col2',columns='col1',aggfunc='mean')
#df.groupby(['col1','col2']).mean().unstack()

相关文章
|
2月前
|
自然语言处理 数据挖掘 数据处理
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
本文将介绍 10 个在数据处理中至关重要的 Pandas 技术模式。这些模式能够显著减少调试时间,提升代码的可维护性,并构建更加清晰的数据处理流水线。
131 3
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
|
2月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
327 0
|
9月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
300 71
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
179 2
|
9月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
9月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
373 73
|
7月前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
89 3
|
8月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
244 22
|
7月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
8月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
185 2

推荐镜像

更多