数据结构与算法(Java篇)笔记--归并排序

简介: 数据结构与算法(Java篇)笔记--归并排序



前言

在我们的程序中,排序是非常常见的一种需求,提供一些数据元素,把这些数据元素按照一定的规则进行排序。比如查询一些订单,按照订单的日期进行排序;再比如查询一些商品,按照商品的价格进行排序等等。所以,接下来我们要学习一些常见的排序算法。


一、递归

  • 定义

定义方法时,在方法内部调用方法本身,称之为递归.

  • 作用
    它通常把一个大型复杂的问题,层层转换为一个与原问题相似的,规模较小的问题来求解。递归策略只需要少量的 程序就可以描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
  • 注意事项

在递归中,不能无限制的调用自己,必须要有边界条件,能够让递归结束,因为每一次递归调用都会在栈内存开辟 新的空间,重新执行方法,如果递归的层级太深,很容易造成栈内存溢出。

  • 代码实现
public class Test {
    public static void main(String[] args) throws Exception {
        int result = factorial(5);
        System.out.println(result);
    }
    public static int factorial(int n){
        if (n==1){
          return 1;
        }
        return n*factorial(n-1);
    }
}

二、归并排序

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子 序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序 表,称为二路归并。

排序原理

Step1.尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是 1为止。

Step2.将相邻的两个子组进行合并成一个有序的大组;

Step3.不断的重复步骤2,直到最终只有一个组为止。

API设计

类名 Merge
构造方法 Merge():创建Merge对象
成员方法 1.public static void sort(Comparable[] a):对数组内的元素进行排序
2.private static void sort(Comparable[] a, int lo, int hi):对数组a中从索引lo到索引hi之间的元素进 行排序
3.private static void merge(Comparable[] a, int lo, int mid, int hi):从索引lo到所以mid为一个子 组,从索引mid+1到索引hi为另一个子组,把数组a中的这两个子组的数据合并成一个有序的大组(从 索引lo到索引hi)
4.private static boolean less(Comparable v,Comparable w):判断v是否小于w
5.private static void exch(Comparable[] a,int i,int j):交换a数组中,索引i和索引j处的值
成 员 变 量 1.private static Comparable[] assist:完成归并操作需要的辅助数组

1.代码实现

package sort;
public class Merge {
    private static Integer[] assist;
    /*
    对数组a中的元素进行排序
    */
    public static void sort(Integer[] a){
        // 1.初始化辅助数组assist
        assist = new Integer[a.length];
        // 2.定义一个lo变量和hi变量,分别记录数组中最小的索引和最大的索引
        int lo = 0;
        int hi = a.length - 1;
        // 3.调用sort重载方法完成数组a中,从索引lo到索引hi的元素的排序
        sort(a,lo,hi);
    }
    /*
    对数组a中从lo到hi的元素进行排序
    */
    private static void sort(Integer[] a, int lo, int hi){
        // 做安全性校验
        if(hi <= lo){
            return;
        }
        //对lo到hi之间的数据进行分为两个组
        int mid = lo+(hi-lo)/2;
        //分别对每一组数据进行排序
        sort(a,lo,mid);//对lo到mid之间的元素进行排序
        sort(a,mid+1,hi);//对mid+1到hi之间的元素进行排序
        //再把两个组中的数据进行归并
        merge(a,lo,mid,hi);
    }
    /*
    对数组中,从lo到mid为一组,从mid+1到hi为一组,对这两组数据进行归并
    */
    private static void merge(Integer[] a, int lo, int mid, int hi){
        //lo到mid这组数据和mid+1到hi这组数据归并到辅助数组assist对应的索引处
        int i = lo;
        int p1 = lo;
        int p2 = mid + 1;
        //比较左边小组和右边小组中的元素大小,哪个小,就把哪个数据填充到assist数组中
        while(p1 <= mid && p2 <= hi){
            if(less(a[p1], a[p2])){
                assist[i++] = a[p1++];
            } else {
                assist[i++] = a[p2++];
            }
        }
        /*上面的循环结束后,如果退出循环的条件是p1<=mid,则证明左边小组中的数据已经归并完毕,如果退
            出循环的条件是p2<=hi,则证明右边小组的数据已经填充完毕;*/
        //所以需要把未填充完毕的数据继续填充到assist中,//下面两个循环,只会执行其中的一个
        while(p1 <= mid){
            assist[i++] = a[p1++];
        }
        while(p2 <= hi){
            assist[i++] = a[p2++];
        }
        //到现在为止,assist数组中,从lo到hi的元素是有序的,再把数据拷贝到a数组中对应的索引处
        for(int index = lo; index <= hi; index++){
            a[index] = assist[index];
        }
    }
    /*
    比较v元素是否小于w元素
    */
    private static boolean less(Integer v, Integer w){
        return v.compareTo(w) < 0;
    }
    /*
    数组元素i和j交换位置
    */
    private static void exch(Integer[] a, int i, int j){
        Integer t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}
//测试代码
public class MergeTest {
    public static void main(String[] args){
        Integer[] arr = {8, 4, 5, 7, 1, 3, 6, 2};
        Merge.sort(arr);
        System.out.println(Arrays.toString(arr));
    }
}

2.运行结果

编写完成之后,点击运行就能知道选择排序的结果,如下图所示:


总结

  • 时间复杂度
    归并排序是分治思想的最典型的例子,上面的算法中,对a[lo…hi]进行排序,先将它分为a[lo…mid]和a[mid+1…hi] 两部分,分别通过递归调用将他们单独排序,最后将有序的子数组归并为最终的排序结果。该递归的出口在于如果 一个数组不能再被分为两个子数组,那么就会执行merge进行归并,在归并的时候判断元素的大小进行排序。
    用树状图来描述归并,如果一个数组有8个元素,那么它将每次除以2找最小的子数组,共拆log8次,值为3,所以 树共有3层,那么自顶向下第k层有2^k 个子数组,每个数组的长度为2^(3-k), 归并最多需要2^(3-k) 次比较。因此每层 的比较次数为 2^k * 2^(3-k) =2^3,那么3层总共为 3*2^3。
    假设元素的个数为n,那么使用归并排序拆分的次数为log2(n),所以共log2(n)层,那么使用log2(n)替换上面32^3中 的3这个层数,最终得出的归并排序的时间复杂度为:log2(n) 2^(log2(n))=log2(n)*n,根据大O推导法则,忽略底 数,最终归并排序的时间复杂度为O(nlogn);
  • 缺点

需要申请额外的数组空间,导致空间复杂度提升,是典型的以空间换时间的操作。

感谢观看,如果有帮助到你,请给题解点个赞和收藏,让更多的人看到。🌹🌹🌹

也欢迎你,关注我。👍👍👍

你们的点赞和留言对我真的很重要!!! ✿✿✿

相关文章
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
104 3
|
4月前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
192 0
|
3月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
339 58
|
2月前
|
存储 负载均衡 算法
我们来说一说 Java 的一致性 Hash 算法
我是小假 期待与你的下一次相遇 ~
101 1
|
2月前
|
存储 监控 算法
企业上网监控场景下布隆过滤器的 Java 算法构建及其性能优化研究
布隆过滤器是一种高效的数据结构,广泛应用于企业上网监控系统中,用于快速判断员工访问的网址是否为违规站点。相比传统哈希表,它具有更低的内存占用和更快的查询速度,支持实时拦截、动态更新和资源压缩,有效提升系统性能并降低成本。
66 0
|
5月前
|
存储 机器学习/深度学习 监控
如何监控员工的电脑——基于滑动时间窗口的Java事件聚合算法实现探析​
在企业管理场景中,如何监控员工的电脑操作行为是一个涉及效率与合规性的重要课题。传统方法依赖日志采集或屏幕截图,但数据量庞大且实时性不足。本文提出一种基于滑动时间窗口的事件聚合算法,通过Java语言实现高效、低资源占用的监控逻辑,为如何监控员工的电脑提供一种轻量化解决方案。
130 3
|
8月前
|
存储 Java 开发者
【潜意识Java】深入详细理解分析Java中的toString()方法重写完整笔记总结,超级详细。
本文详细介绍了 Java 中 `toString()` 方法的重写技巧及其重要
400 10
【潜意识Java】深入详细理解分析Java中的toString()方法重写完整笔记总结,超级详细。
|
7月前
|
存储 算法 Java
解锁“分享文件”高效密码:探秘 Java 二叉搜索树算法
在信息爆炸的时代,文件分享至关重要。二叉搜索树(BST)以其高效的查找性能,为文件分享优化提供了新路径。本文聚焦Java环境下BST的应用,介绍其基础结构、实现示例及进阶优化。BST通过有序节点快速定位文件,结合自平衡树、多线程和权限管理,大幅提升文件分享效率与安全性。代码示例展示了文件插入与查找的基本操作,适用于大规模并发场景,确保分享过程流畅高效。掌握BST算法,助力文件分享创新发展。
|
8月前
|
存储 人工智能 算法
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。

热门文章

最新文章