数据结构可视化 Graphviz在Python中的使用 [树的可视化]

简介: 数据结构可视化 Graphviz在Python中的使用 [树的可视化]

1. Graphviz 相关介绍

1.1 安装

安装直接在shell里面pip就好了,代码如下:

pip install graphviz

一个例子:

from graphviz import Digraph, Graph
g = Graph(engine='dot',
         node_attr={'shape': 'egg'},
         )
g.edge('hello1', 'hello2', label='l')
g.edge('hello1', 'hello3', label='r')
g.edge('hello2', 'hello4', label='l')
g.edge('hello2', 'hello5', label='r')
g.view()

1.2 有向图和无向图

有向图:graphviz.Digraph() edge 有向图

无向图:graphviz.Graph() edge 无向图

Digraph和Graph参数都是一样的,其中:

name: graphviz源码的文件名 即name.gv

comment: graphviz源码的comment,在源码的第一行

filename: graphviz源码的文件名 即filename

directory: 保存graphviz源码的文件夹

format: 文件格式 bmp, canon, cgimage, cmap, cmapx, cmapx_np, dot, dot_json, eps, exr, fig, gd, gd2, gif, gtk, gv, ico, imap, imap_np, ismap, jp2, jpe, jpeg, jpg, json, json0, pct, pdf, pic, pict, plain, plain-ext, png, pov, ps, ps2, psd, sgi, svg, svgz, tga, tif, tiff, tk, vml, vmlz, vrml, wbmp, webp, x11, xdot, xdot1.2, xdot1.4, xdot_json, xlib

engine: 布局 circo, dot, fdp, neato, osage, patchwork, sfdp, twopi

encoding: 源码保存的编码

graph_attr: 图属性

node_attr: 点属性

edge_attr: 边属性

1.3 node 属性

node_attr = {‘shape’: ‘box’}

node_attr = {‘fontname’: ‘SimHei’}

  • 黑体:SimHei
  • 宋体:SimSun
  • 新宋体:NSimSun
  • 仿宋:FangSong
  • 楷体:KaiTi

1.4 edge 属性

edge_attr = {‘arrowhead’: ‘rnormal’}

待更新

2. 数据结构可视化

2.1 画树

利用Graphviz画树,代码如下:

from graphviz import Digraph
class Node:
    def __init__(self, number, val=None, name=None, left=None, right=None):
        """number 必须要保证每个结点都是独一无二的,其他属性都可以 可存在可不存在"""
        self.number = number
        self.val = val
        self.name = name
        self.left = left
        self.right = right
def plot_tree(root):
    g = Digraph(
      format='png',
        engine='dot',
        node_attr={
            'shape': 'egg',
            'fontname': 'SimHei'
        },
        edge_attr={'arrowhead': 'normal'},
    )
    def dfs(g, node, parent=None, where=None):
        if not node:
            return
        if node and parent:
          # 如果 有name就以name为标签,没有name就以{number:val}表示标签
            name1 = parent.name if parent.name else str(parent.number) + f':{parent.val}'
            name2 = node.name if node.name else str(node.number) + f':{node.val}'
            # label 表示是否标记左or右
            g.edge(name1, name2, label=where)
        dfs(g, node.left, node, where='l')
        dfs(g, node.right, node, where='r')
    
    dfs(g, root)
    g.view()

使用方法如下:

plot_tree(root)


目录
相关文章
|
5天前
|
JSON 数据可视化 数据处理
Python基础第九篇(Python可视化的开发)
Python基础第九篇(Python可视化的开发)
|
2天前
|
算法 Java 机器人
Java数据结构与算法:AVL树
Java数据结构与算法:AVL树
|
2天前
|
机器学习/深度学习 自然语言处理 数据可视化
文本挖掘与可视化:生成个性化词云的Python实践【7个案例】
词云(Word Cloud),又称为文字云或标签云,是一种用于文本数据可视化的技术,通过不同大小、颜色和字体展示文本中单词的出现频率或重要性。在词云中,更频繁出现的单词会显示得更大,反之则更小。
|
3天前
|
存储 算法 Python
python常用算法(5)——树,二叉树与AVL树(一)
python常用算法(5)——树,二叉树与AVL树
|
3天前
|
机器学习/深度学习 自然语言处理 数据可视化
文本挖掘与可视化:生成个性化词云的Python实践【7个案例】
词云是文本数据可视化的工具,显示单词频率,直观、美观,适用于快速展示文本关键信息。 - 用途包括关键词展示、数据探索、报告演示、情感分析和教育。 - 使用`wordcloud`和`matplotlib`库生成词云,`wordcloud`负责生成,`matplotlib`负责显示。 - 示例代码展示了从简单词云到基于蒙版、颜色和关键词权重的复杂词云生成。 - 案例覆盖了中文分词(使用`jieba`库)、自定义颜色和关键词权重的词云。 - 代码示例包括读取文本、分词、设置词云参数、显示和保存图像。
16 1
|
4天前
|
存储 缓存 调度
Python教程:一文了解10种数据结构在Python中的实现方法
数据结构是计算机科学中非常重要的概念,它用于组织和存储数据,使得数据可以高效地被访问和操作。在编程中,选择合适的数据结构对于解决问题和提高程序性能至关重要。
19 1
|
2天前
|
数据可视化
Seaborn 可视化(三)
Seaborn的pairplot用于多变量数据可视化,但上半部分与下半部分重复。可通过PairGrid手动定制,如示例所示,用regplot和kdeplot分别绘制对角线以上和以下的图,histplot画对角线。hue参数增强可视化,比如在violinplot和lmplot中按性别着色,展示不同类别。还能通过点的大小和形状(如markers参数)添加信息。Seaborn提供darkgrid等5种样式,用sns.set_style切换。
|
2天前
|
数据可视化 Python
Seaborn 可视化(二)
Seaborn教程展示了如何用`jointplot`创建蜂巢图,以及使用`matplotlib`的`hexbin`函数绘制2D核密度图。此外,它还介绍了2D核密度图,强调其在展示两个变量联合分布上的作用。条形图、箱线图和小提琴图也被讨论,其中箱线图揭示了数据的统计特性,而小提琴图结合了箱线图和核密度图的信息。`pairplot`函数用于可视化数据集中所有变量之间的两两关系。每种图表类型都配有示例图像。
|
2天前
|
数据可视化 数据挖掘 API
Seaborn 可视化(一)
Seaborn是Python的一个基于matplotlib的统计图形库,提供交互式界面,便于创建吸引人的统计图表。它与Pandas集成良好,支持直接使用DataFrame数据进行绘图。Seaborn能绘制直方图(distplot)、密度图(核密度估计)、条形图(计数图)以及散点图(regplot、lmplot、jointplot),适用于单变量和双变量数据分析,如展示分布、关系和趋势。例如,`sns.distplot()`用于直方图,`sns.lmplot()`和`sns.jointplot()`则用于绘制散点图并可添加回归线。
|
3天前
数据结构===树
数据结构===树

热门文章

最新文章