Google数据中心使用的是基于Linux的集群,称为“LinuxPC集群”。这个集群是由大量的服务器组成的,每个服务器都运行着Linux操作系统。这些服务器通过高速网络连接在一起,形成一个庞大的计算和存储资源池。
LinuxPC集群是Google数据中心的核心组件之一,它为Google提供了高度可扩展、高性能、高可靠性的计算能力。Google利用LinuxPC集群来运行各种数据处理和分析任务,包括搜索、广告、地图等业务。
LinuxPC集群的管理和调度是由Google开发的名为“Borg”的系统来完成的。Borg系统可以动态地管理和调度集群中的任务,以实现最佳的资源利用率和最高的系统性能。
对应模块
GFS
GFS(Google File System)是Google开发的一种分布式文件系统,用于存储和管理大规模数据集。GFS的主要特点包括可扩展性、容错性和高吞吐量,它可以支持PB级别的数据存储,同时提供高吞吐量和低延迟的数据访问。
GFS采用数据冗余和数据副本的方式,保证数据的可靠性和高可用性。它将数据分成多个块,并在多个服务器上进行复制和分发,以实现数据的负载均衡和故障恢复。此外,GFS还提供了一种易于管理的文件系统接口,支持全局名称空间、快照和读写锁等功能,可以方便地进行文件管理。
MapReduce
MapReduce是一种编程模型,用于处理大规模数据集的并行运算。它是由Google开发并首次提出的,现在已成为Hadoop等大数据处理框架的核心组件之一。MapReduce通过将数据切分成多个小任务,并在集群中的多台服务器上并行处理这些任务,从而实现高效的数据处理和分析。
MapReduce主要包括两个阶段:Map阶段和Reduce阶段。
- Map阶段:将输入数据切分成多个小任务,并对每个任务进行映射处理。Map函数接收输入数据,根据预定义的映射规则将数据转换成中间结果,并输出中间结果。这个阶段通常会进行数据清洗、转换和预处理等操作。
- Reduce阶段:对Map阶段处理后的数据进行聚合和汇总。Reduce函数接收Map阶段输出的中间结果,根据预定义的聚合规则将中间结果合并成最终结果,并输出最终结果。这个阶段通常会进行数据统计、汇总和分析等操作。
BigTable
BigTable是一种分布式数据库系统,由Google开发,用于存储和管理大规模结构化数据。它是Google数据中心的核心基础设施之一,为Google的搜索、广告和地图等业务提供了高度可扩展、高性能和高可靠性的计算能力。采用table-oriented数据模型,将数据存储在稀疏的多维表中。表中的每个单元存储该内容的不同版本(以不同时间戳作为区分)并按降序排列(最新版本位于最前面)。它支持单行原子操作,但跨行操作则无法保证原子性。使用大量的Tablet,每个Tablet大概有100-200MB,每台机器有100个左右的Tablets。Tablet是分布式存储和资源调度的最小单元。BigTable还使用SSTable格式将数据持久化,并通过Chubby服务进行分布式调度。