傅里叶变换算法和Python代码实现

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 傅立叶变换是物理学家、数学家、工程师和计算机科学家常用的最有用的工具之一。本篇文章我们将使用Python来实现一个连续函数的傅立叶变换。

我们使用以下定义来表示傅立叶变换及其逆变换。

设 f: ℝ → ℂ 是一个既可积又可平方积分的复值函数。那么它的傅立叶变换,记为 f̂,是由以下复值函数给出:

同样地,对于一个复值函数 ĝ,我们定义其逆傅立叶变换(记为 g)为

这些积分进行数值计算是可行的,但通常是棘手的——特别是在更高维度上。所以必须采用某种离散化的方法。

在Numpy文档中关于傅立叶变换如下,实现这一点的关键是离散傅立叶变换(DFT):

 当函数及其傅立叶变换都被离散化的对应物所取代时,这被称为离散傅立叶变换(DFT)。离散傅立叶变换由于计算它的一种非常快速的算法而成为数值计算的重要工具,这个算法被称为快速傅立叶变换(FFT),这个算法最早由高斯(1805年)发现,我们现在使用的形式是由Cooley和Tukey公开的

根据Numpy文档,一个具有 n 个元素的序列 a₀, …, aₙ₋₁ 的 DFT 计算如下:

我们将积分分解为黎曼和。在 n 个不同且均匀间隔的点 xₘ = x₀ + m Δx 处对 x 进行采样,其中 m 的范围从 0 到 n-1,x₀ 是任意选择的最左侧点。然后就可以近似表示积分为

现在对变量 k 进行离散化,在 n 个均匀间隔的点 kₗ = l Δk 处对其进行采样。然后积分变为:

这使得我们可以用类似于 DFT 的形式来计算函数的傅立叶变换。这与DFT的计算形式非常相似,这让我们可以使用FFT算法来高效计算傅立叶变换的近似值。

最后一点是将Δx和Δk联系起来,以便指数项变为-2π I ml/n,这是Numpy的实现方法;

这就是不确定性原理,所以我们得到了最终的方程

我们可以对逆变换做同样的处理。在Numpy中,它被定义为

1/n是归一化因子:

概念和公式我们已经通过Numpy的文档进行了解了,下面开始我们自己的Python实现

 importnumpyasnp
 importmatplotlib.pyplotasplt


 deffourier_transform_1d(func, x, sort_results=False):

     """
     Computes the continuous Fourier transform of function `func`, following the physicist's convention
     Grid x must be evenly spaced.

     Parameters
     ----------

     - func (callable): function of one argument to be Fourier transformed
     - x (numpy array) evenly spaced points to sample the function
     - sort_results (bool): reorders the final results so that the x-axis vector is sorted in a natural order.
         Warning: setting it to True makes the output not transformable back via Inverse Fourier transform

     Returns
     --------
     - k (numpy array): evenly spaced x-axis on Fourier domain. Not sorted from low to high, unless `sort_results` is set to True
     - g (numpy array): Fourier transform values calculated at coordinate k
     """
     x0, dx=x[0], x[1] -x[0]
     f=func(x)

     g=np.fft.fft(f) # DFT calculation

     # frequency normalization factor is 2*np.pi/dt
     w=np.fft.fftfreq(f.size)*2*np.pi/dx

     # Multiply by external factor
     g*=dx*np.exp(-complex(0,1)*w*x0) 

     ifsort_results:    
         zipped_lists=zip(w, g)
         sorted_pairs=sorted(zipped_lists)
         sorted_list1, sorted_list2=zip(*sorted_pairs)
         w=np.array(list(sorted_list1))
         g=np.array(list(sorted_list2))

     returnw, g


 definverse_fourier_transform_1d(func, k, sort_results=False):
     """
     Computes the inverse Fourier transform of function `func`, following the physicist's convention
     Grid x must be evenly spaced.

     Parameters
     ----------

     - func (callable): function of one argument to be inverse Fourier transformed
     - k (numpy array) evenly spaced points in Fourier space to sample the function
     - sort_results (bool): reorders the final results so that the x-axis vector is sorted in a natural order.
         Warning: setting it to True makes the output not transformable back via Fourier transform

     Returns
     --------
     - y (numpy array): evenly spaced x-axis. Not sorted from low to high, unless `sort_results` is set to True
     - h (numpy array): inverse Fourier transform values calculated at coordinate x
     """
     dk=k[1] -k[0]

     f=np.fft.ifft(func) *len(k) *dk/(2*np.pi)
     x=np.fft.fftfreq(f.size)*2*np.pi/dk

     ifsort_results:    
         zipped_lists=zip(x, f)
         sorted_pairs=sorted(zipped_lists)
         sorted_list1, sorted_list2=zip(*sorted_pairs)
         x=np.array(list(sorted_list1))
         f=np.array(list(sorted_list2))
     returnx, f

我们来通过一些例子看看我们自己实现是否正确。

第一个例子:阶跃函数

函数在-1/2和1/2之间是1,在其他地方是0。它的傅里叶变换是

 N = 2048

 # Define the function f(x)
 f = lambda x: np.where((x >= -0.5) & (x <= 0.5), 1, 0)
 x = np.linspace(-1, 1, N) 
 plt.plot(x, f(x));

画出傅里叶变换,以及在k的采样值和整个连续体上计算的解析解:

 k, g = fourier_transform_1d(f, x, sort_results=True) # make it easier to plot
 kk = np.linspace(-30,30, 100)

 plt.plot(k, np.real(g), label='Numerical'); 
 plt.plot(k, np.sin(k/2)/(k/2), linestyle='-.', label='Analytic (samples)')
 plt.plot(kk, np.sin(kk/2)/(kk/2), linestyle='--', label='Analytic (full)')
 plt.xlim(-30, 30)
 plt.legend();

看起来是没问题的,然后我们把它转换回来:

 k, g = fourier_transform_1d(f, x)
 y, h = inverse_fourier_transform_1d(g, k, sort_results=True)

 plt.plot(y, np.real(h), label='Numerical transform')
 plt.plot(x, f(x), linestyle='--', label='Analytical')
 plt.legend();

我们可以清楚地看到不连续边缘处的 Gibbs 现象——这是傅里叶变换的一个预期特征。

第二个例子:高斯PDF

傅里叶变换

下面,我们绘制数值傅里叶变换和解析值:

以及傅里叶逆变换与原函数的对比

可以看到,我们的实现没有任何问题

最后,如果你对机器学习的基础计算和算法比较感兴趣,可以多多关注Numpy和SK-learn的文档(还有scipy但是这个更复杂),这两个库不仅有很多方法的实现,还有这些方法的详细解释,这对于我们学习是非常有帮助的。

例如本文的一些数学的公式和概念就是来自于Numpy的文档,有兴趣的可以直接看看

https://avoid.overfit.cn/post/546692942b9144a5a56d734c5a007099

作者:Alessandro Morita Gagliardi

目录
相关文章
|
23天前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
553 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
27天前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
|
8天前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
41 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
1天前
|
算法 数据可视化 Python
Python中利用遗传算法探索迷宫出路
本文探讨了如何利用Python和遗传算法解决迷宫问题。迷宫建模通过二维数组实现,0表示通路,1为墙壁,&#39;S&#39;和&#39;E&#39;分别代表起点与终点。遗传算法的核心包括个体编码(路径方向序列)、适应度函数(评估路径有效性)、选择、交叉和变异操作。通过迭代优化,算法逐步生成更优路径,最终找到从起点到终点的最佳解决方案。文末还展示了结果可视化方法及遗传算法的应用前景。
|
5天前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
36 7
|
12天前
|
存储 监控 算法
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
37 6
|
16天前
|
运维 监控 算法
基于 Python 迪杰斯特拉算法的局域网计算机监控技术探究
信息技术高速演进的当下,局域网计算机监控对于保障企业网络安全、优化资源配置以及提升整体运行效能具有关键意义。通过实时监测网络状态、追踪计算机活动,企业得以及时察觉潜在风险并采取相应举措。在这一复杂的监控体系背后,数据结构与算法发挥着不可或缺的作用。本文将聚焦于迪杰斯特拉(Dijkstra)算法,深入探究其在局域网计算机监控中的应用,并借助 Python 代码示例予以详细阐释。
38 6
|
25天前
|
人工智能 编解码 算法
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
|
25天前
|
存储 监控 算法
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
40 3
|
26天前
|
人工智能 监控 算法
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
109 4