傅里叶变换算法和Python代码实现

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: 傅立叶变换是物理学家、数学家、工程师和计算机科学家常用的最有用的工具之一。本篇文章我们将使用Python来实现一个连续函数的傅立叶变换。

我们使用以下定义来表示傅立叶变换及其逆变换。

设 f: ℝ → ℂ 是一个既可积又可平方积分的复值函数。那么它的傅立叶变换,记为 f̂,是由以下复值函数给出:

同样地,对于一个复值函数 ĝ,我们定义其逆傅立叶变换(记为 g)为

这些积分进行数值计算是可行的,但通常是棘手的——特别是在更高维度上。所以必须采用某种离散化的方法。

在Numpy文档中关于傅立叶变换如下,实现这一点的关键是离散傅立叶变换(DFT):

 当函数及其傅立叶变换都被离散化的对应物所取代时,这被称为离散傅立叶变换(DFT)。离散傅立叶变换由于计算它的一种非常快速的算法而成为数值计算的重要工具,这个算法被称为快速傅立叶变换(FFT),这个算法最早由高斯(1805年)发现,我们现在使用的形式是由Cooley和Tukey公开的

根据Numpy文档,一个具有 n 个元素的序列 a₀, …, aₙ₋₁ 的 DFT 计算如下:

我们将积分分解为黎曼和。在 n 个不同且均匀间隔的点 xₘ = x₀ + m Δx 处对 x 进行采样,其中 m 的范围从 0 到 n-1,x₀ 是任意选择的最左侧点。然后就可以近似表示积分为

现在对变量 k 进行离散化,在 n 个均匀间隔的点 kₗ = l Δk 处对其进行采样。然后积分变为:

这使得我们可以用类似于 DFT 的形式来计算函数的傅立叶变换。这与DFT的计算形式非常相似,这让我们可以使用FFT算法来高效计算傅立叶变换的近似值。

最后一点是将Δx和Δk联系起来,以便指数项变为-2π I ml/n,这是Numpy的实现方法;

这就是不确定性原理,所以我们得到了最终的方程

我们可以对逆变换做同样的处理。在Numpy中,它被定义为

1/n是归一化因子:

概念和公式我们已经通过Numpy的文档进行了解了,下面开始我们自己的Python实现

 importnumpyasnp
 importmatplotlib.pyplotasplt


 deffourier_transform_1d(func, x, sort_results=False):

     """
     Computes the continuous Fourier transform of function `func`, following the physicist's convention
     Grid x must be evenly spaced.

     Parameters
     ----------

     - func (callable): function of one argument to be Fourier transformed
     - x (numpy array) evenly spaced points to sample the function
     - sort_results (bool): reorders the final results so that the x-axis vector is sorted in a natural order.
         Warning: setting it to True makes the output not transformable back via Inverse Fourier transform

     Returns
     --------
     - k (numpy array): evenly spaced x-axis on Fourier domain. Not sorted from low to high, unless `sort_results` is set to True
     - g (numpy array): Fourier transform values calculated at coordinate k
     """
     x0, dx=x[0], x[1] -x[0]
     f=func(x)

     g=np.fft.fft(f) # DFT calculation

     # frequency normalization factor is 2*np.pi/dt
     w=np.fft.fftfreq(f.size)*2*np.pi/dx

     # Multiply by external factor
     g*=dx*np.exp(-complex(0,1)*w*x0) 

     ifsort_results:    
         zipped_lists=zip(w, g)
         sorted_pairs=sorted(zipped_lists)
         sorted_list1, sorted_list2=zip(*sorted_pairs)
         w=np.array(list(sorted_list1))
         g=np.array(list(sorted_list2))

     returnw, g


 definverse_fourier_transform_1d(func, k, sort_results=False):
     """
     Computes the inverse Fourier transform of function `func`, following the physicist's convention
     Grid x must be evenly spaced.

     Parameters
     ----------

     - func (callable): function of one argument to be inverse Fourier transformed
     - k (numpy array) evenly spaced points in Fourier space to sample the function
     - sort_results (bool): reorders the final results so that the x-axis vector is sorted in a natural order.
         Warning: setting it to True makes the output not transformable back via Fourier transform

     Returns
     --------
     - y (numpy array): evenly spaced x-axis. Not sorted from low to high, unless `sort_results` is set to True
     - h (numpy array): inverse Fourier transform values calculated at coordinate x
     """
     dk=k[1] -k[0]

     f=np.fft.ifft(func) *len(k) *dk/(2*np.pi)
     x=np.fft.fftfreq(f.size)*2*np.pi/dk

     ifsort_results:    
         zipped_lists=zip(x, f)
         sorted_pairs=sorted(zipped_lists)
         sorted_list1, sorted_list2=zip(*sorted_pairs)
         x=np.array(list(sorted_list1))
         f=np.array(list(sorted_list2))
     returnx, f

我们来通过一些例子看看我们自己实现是否正确。

第一个例子:阶跃函数

函数在-1/2和1/2之间是1,在其他地方是0。它的傅里叶变换是

 N = 2048

 # Define the function f(x)
 f = lambda x: np.where((x >= -0.5) & (x <= 0.5), 1, 0)
 x = np.linspace(-1, 1, N) 
 plt.plot(x, f(x));

画出傅里叶变换,以及在k的采样值和整个连续体上计算的解析解:

 k, g = fourier_transform_1d(f, x, sort_results=True) # make it easier to plot
 kk = np.linspace(-30,30, 100)

 plt.plot(k, np.real(g), label='Numerical'); 
 plt.plot(k, np.sin(k/2)/(k/2), linestyle='-.', label='Analytic (samples)')
 plt.plot(kk, np.sin(kk/2)/(kk/2), linestyle='--', label='Analytic (full)')
 plt.xlim(-30, 30)
 plt.legend();

看起来是没问题的,然后我们把它转换回来:

 k, g = fourier_transform_1d(f, x)
 y, h = inverse_fourier_transform_1d(g, k, sort_results=True)

 plt.plot(y, np.real(h), label='Numerical transform')
 plt.plot(x, f(x), linestyle='--', label='Analytical')
 plt.legend();

我们可以清楚地看到不连续边缘处的 Gibbs 现象——这是傅里叶变换的一个预期特征。

第二个例子:高斯PDF

傅里叶变换

下面,我们绘制数值傅里叶变换和解析值:

以及傅里叶逆变换与原函数的对比

可以看到,我们的实现没有任何问题

最后,如果你对机器学习的基础计算和算法比较感兴趣,可以多多关注Numpy和SK-learn的文档(还有scipy但是这个更复杂),这两个库不仅有很多方法的实现,还有这些方法的详细解释,这对于我们学习是非常有帮助的。

例如本文的一些数学的公式和概念就是来自于Numpy的文档,有兴趣的可以直接看看

https://avoid.overfit.cn/post/546692942b9144a5a56d734c5a007099

作者:Alessandro Morita Gagliardi

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
机械视觉:原理、应用及Python代码示例
机械视觉:原理、应用及Python代码示例
|
8天前
|
并行计算 C语言 开发者
优化Python代码的五大技巧
Python作为一种流行的编程语言,在各种应用场景中广泛使用。然而,随着项目规模的增长和需求的变化,Python代码的性能和可维护性也成为了关键问题。本文将介绍优化Python代码的五大技巧,帮助开发者提升代码效率和质量。
|
3天前
|
存储 缓存 算法
优化Python代码性能的7个技巧
在日常的Python开发中,优化代码性能是一个重要的课题。本文介绍了7个实用的技巧,帮助开发者提高Python代码的执行效率,包括利用生成器表达式、使用适量的缓存、避免不必要的循环等。通过本文的指导,读者可以更好地理解Python代码性能优化的方法,提升自身的编程水平。
|
1天前
|
存储 开发者 Python
优化Python代码中的内存占用:实用技巧与最佳实践
本文将介绍如何优化Python代码中的内存占用,通过实用技巧和最佳实践,有效减少内存消耗,提升代码性能和可扩展性。
|
3天前
|
算法 数据可视化 Python
Python用MCMC马尔科夫链蒙特卡洛、拒绝抽样和Metropolis-Hastings采样算法
Python用MCMC马尔科夫链蒙特卡洛、拒绝抽样和Metropolis-Hastings采样算法
16 6
|
4天前
|
机器学习/深度学习 算法 搜索推荐
Python用机器学习算法进行因果推断与增量、增益模型Uplift Modeling智能营销模型
Python用机器学习算法进行因果推断与增量、增益模型Uplift Modeling智能营销模型
31 12
|
5天前
|
人工智能 Python
【Python实用技能】建议收藏:自动化实现网页内容转PDF并保存的方法探索(含代码,亲测可用)
【Python实用技能】建议收藏:自动化实现网页内容转PDF并保存的方法探索(含代码,亲测可用)
24 0
|
5天前
|
人工智能 Python
【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
10 0
|
5天前
|
Linux 网络安全 开发工具
【超详细!超多图!】【代码管理】Python微信公众号开发(3)- 服务器代码上传Github
【超详细!超多图!】【代码管理】Python微信公众号开发(3)- 服务器代码上传Github
11 0
|
5天前
|
数据安全/隐私保护 Python
Python中的装饰器:提升代码可读性和灵活性
Python中的装饰器是一种强大的编程工具,能够提升代码的可读性和灵活性。本文将深入探讨装饰器的原理和用法,以及如何利用装饰器来简化代码、实现日志记录、权限控制等功能,从而让你的Python代码更加优雅和高效。

热门文章

最新文章