PyTorch实例:简单线性回归的训练和反向传播解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: PyTorch实例:简单线性回归的训练和反向传播解析

🥦引言

在神经网络中,反向传播算法是一个关键的概念,它在训练神经网络中起着至关重要的作用。本文将深入探讨反向传播算法的原理、实现以及在深度学习中的应用。

🥦什么是反向传播?

反向传播(Backpropagation)是一种用于训练神经网络的监督学习算法。它的基本思想是通过不断调整神经网络中的权重和偏差,使其能够逐渐适应输入数据的特征,从而实现对复杂问题的建模和预测。

反向传播算法的核心思想是通过计算损失函数(Loss Function)的梯度来更新神经网络中的参数,以降低预测值与实际值之间的误差。这个过程涉及到两个关键步骤:前向传播(Forward Propagation)和反向传播。

  • 前向传播(forward):在前向传播过程中,输入数据通过神经网络,每一层都会进行一系列的线性变换和非线性激活函数的应用,最终得到一个预测值。这个预测值会与实际标签进行比较,得到损失函数的值。
  • 反向传播(backward):在反向传播过程中,我们计算损失函数相对于网络中每个参数的梯度。这个梯度告诉我们如何微调每个参数,以减小损失函数的值。梯度下降算法通常用于更新权重和偏差。

🥦反向传播的实现(代码)

要实现反向传播,我们需要选择一个损失函数,通常是均方误差(Mean Squared Error)或交叉熵(Cross-Entropy)。然后,我们计算损失函数相对于每个参数的偏导数(梯度)。这可以使用链式法则来完成,从输出层向后逐层传递。

接下来,我们使用梯度下降或其变种来更新权重和偏差。梯度下降的核心思想是沿着梯度的反方向调整参数,以降低损失函数的值。这个过程不断迭代,直到损失函数收敛到一个较小的值或达到一定的迭代次数。

在代码实现前,我能先了解一下反向传播是怎么个事,下文主要以图文的形式进行输出

这里我们回顾一下梯度,首先假设一个简单的线性模型

接下来,我们展示一下什么是前向传播(其实就是字面的意思),在神经网络中通常以右面的进行展示,大概意思就是输入x与权重w进行乘法运算,得到了y’

下图是随机梯度下降的核心公式以及损失函数的导数

下图是一个两层的神经网络

如果以图画的形式理解可以从下图进行理解

首先还是和之前的一样,进行输入和权重的矩阵乘法(这里刘二大人推荐一个查询书籍MatrixCookbook

之后引入b,不理解的小伙伴可以当做截距

那么下图框框里面的就是一层神经网络

那么两层也就可以清晰的得到了,最后得到了y’

刚刚的描述过于笼统,接下来详细介绍一下前向和后向

在前向传播运算中,f里面进行了z对x和w的偏导求解

在反向传播里,损失loss对z的偏导,以及经过f后,求得loss对x和w的偏导。按理说我们只用权重w,但是如果x是上一层的输出(多层神经网络)那就需要了,至于loss对x和w的偏导怎么求参考结尾的链式求导法则

接下来我们可以假设x=2,w=3,手动的求解loss对x和w的偏导,求完就可以对权重的更新了

也可以从如下的计算图进行清晰的展示前后向传播

如果x=2,y=4,我写了一下如果错了欢迎指正

这里粗略的解释一下pytorch中的tensor,大概意思是它重要,其中还有包含了可以存储数值的data和存储梯度的grad

w.requires_grad = True # 默认是不自动计算梯度,需自行设计

如下是完整的代码(带注释)

import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0])
w.requires_grad = True
def forward(x):
    return x * w # 这里的权重w是tensor
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2
print("predict (before training)",  4, forward(4).item())
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)  # 前向传播
        l.backward()  # 后向传播
        print('\tgrad:', x, y, w.grad.item())  # item是为了防止计算图
        w.data = w.data - 0.01 * w.grad.data  # 注意不要直接取grad,因为这也属于重新创建计算图,只要值就好
        w.grad.data.zero_()  # 注意要清零否者会造成loss对w的导数一直累加,下图说明
    print("progress:", epoch, l.item())
print("predict (after training)", 4, forward(4).item())
  • 循环进行模型训练,这里设置了100个训练周期(epochs)。
  • 在每个周期内,遍历输入数据 x_data 和对应的目标数据 y_data。
  • 对于每个数据点,计算前向传播,然后进行反向传播以计算梯度。
  • 打印出每次反向传播后权重 w 的梯度值。
  • 更新权重 w,使用梯度下降法更新参数,以最小化损失函数。
  • 在更新权重之前,使用 .grad.data.zero_() 来清零梯度,以防止梯度累积。
  • .item() 的作用是将张量中的值提取为Python标量,以便进行打印

运行结果如下

🥦反向传播在深度学习中的应用

反向传播算法在深度学习中具有广泛的应用,它使神经网络能够学习复杂的特征和模式,从而在图像分类、自然语言处理、语音识别等各种任务中取得了显著的成就。

以下是反向传播在深度学习中的一些应用:

  • 图像分类:卷积神经网络(CNNs)使用反向传播来学习图像特征,用于图像分类任务。
  • 自然语言处理:循环神经网络(RNNs)和变换器(Transformers)等模型使用反向传播来学习文本数据的语义表示,用于机器翻译、情感分析等任务。
  • 强化学习:在强化学习中,反向传播可以用于训练智能体,使其学会在不同环境中做出合适的决策。
  • 生成对抗网络:生成对抗网络(GANs)使用反向传播来训练生成器和判别器,从而生成逼真的图像、音频或文本。

🥦链式求导法则

在神经网络中,链式求导法则是一个关键的概念,用于计算神经网络中的权重参数的梯度,从而进行反向传播(backpropagation)算法,这是训练神经网络的核心。下面以一个简单的神经网络为例,说明链式求导法则在神经网络中的应用:

假设我们有一个简单的神经网络,包含一个输入层、一个隐藏层和一个输出层。网络的输出可以表示为:

y = f(g(h(x)))

其中:

x 是输入数据。
h(x) 是隐藏层的激活函数。
g(h(x)) 是输出层的激活函数。
f(g(h(x))) 是网络的最终输出。

我们想要计算损失函数关于网络输出 y 的梯度,以便更新网络的权重参数以最小化损失。使用链式求导法则,我们可以将这个问题分解成多个步骤:

  • 首先,计算损失函数关于网络输出 y 的梯度 ∂L/∂y,其中 L 是损失函数。
  • 接下来,计算输出层的激活函数关于其输入的梯度 ∂g(h(x))/∂h(x)。
  • 然后,计算隐藏层的激活函数关于其输入的梯度 ∂h(x)/∂x。
  • 最后,将这些梯度相乘,得到损失函数关于输入数据 x 的梯度 ∂L/∂x,并用它来更新网络的权重参数。

链式求导法则允许我们将整个过程分解为这些步骤,并在每个步骤中计算局部梯度。这是神经网络中反向传播算法的关键,它允许我们有效地更新网络的参数,以便网络能够学习从输入到输出的复杂映射关系。

🥦总结

反向传播是深度学习中的核心算法之一,它使神经网络能够自动学习复杂的特征和模式,从而在各种任务中取得了巨大的成功。理解反向传播的原理和实现对于深度学习从业者非常重要,它是构建和训练神经网络的基础。希望本文对您有所帮助,深入了解反向传播将有助于更好地理解深度学习的工作原理和应用。

本文根据b站刘二大人《PyTorch深度学习实践》完结合集学习后加以整理,文中图文均不属于个人。

挑战与创造都是很痛苦的,但是很充实。


相关文章
|
18天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
35 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2天前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
17 5
|
1月前
|
存储 负载均衡 监控
数据库多实例的深入解析
【10月更文挑战第24天】数据库多实例是一种重要的数据库架构方式,它为数据库的高效运行和灵活管理提供了多种优势。在实际应用中,需要根据具体的业务需求和技术环境,合理选择和配置多实例,以充分发挥其优势,提高数据库系统的性能和可靠性。随着技术的不断发展和进步,数据库多实例技术也将不断完善和创新,为数据库管理带来更多的可能性和便利。
109 57
|
16天前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
19天前
|
存储 网络协议 算法
【C语言】进制转换无难事:二进制、十进制、八进制与十六进制的全解析与实例
进制转换是计算机编程中常见的操作。在C语言中,了解如何在不同进制之间转换数据对于处理和显示数据非常重要。本文将详细介绍如何在二进制、十进制、八进制和十六进制之间进行转换。
28 5
|
26天前
|
存储 机器学习/深度学习 编解码
阿里云服务器计算型c8i实例解析:实例规格性能及使用场景和最新价格参考
计算型c8i实例作为阿里云服务器家族中的重要成员,以其卓越的计算性能、稳定的算力输出、强劲的I/O引擎以及芯片级的安全加固,广泛适用于机器学习推理、数据分析、批量计算、视频编码、游戏服务器前端、高性能科学和工程应用以及Web前端服务器等多种场景。本文将全面介绍阿里云服务器计算型c8i实例,从规格族特性、适用场景、详细规格指标、性能优势、实际应用案例,到最新的活动价格,以供大家参考。
|
2月前
|
XML 数据格式
HTML 实例解析
本文介绍了HTML中常见元素的使用方法,包括`<p>`、`<body>`和`<html>`等。详细解析了这些元素的结构和作用,并强调了正确使用结束标签的重要性。此外,还提到了空元素的使用及大小写标签的规范。
|
3月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
163 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
2月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
67 1
|
3月前
|
数据可视化 Python
Python绘制基频曲线——实例解析与应用探讨
Python绘制基频曲线——实例解析与应用探讨
62 9
下一篇
DataWorks