【微服务】mysql + elasticsearch数据双写设计与实现

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 【微服务】mysql + elasticsearch数据双写设计与实现

【微服务】mysql + elasticsearch数据双写设计与实现

在微服务架构中,将数据同时写入MySQL和Elasticsearch是一种常见的做法,以实现数据的持久化存储和全文搜索等功能。下面是一个简单的设计和实现步骤:

image.png

 

设计思路

1. 数据写入MySQL:将数据写入MySQL数据库,用于持久化存储和关系型查询。

image.png

 

2. 数据写入Elasticsearch:将相同的数据写入Elasticsearch,用于全文搜索和复杂的查询。

3. image.png

 

3. 同步机制:确保数据同时写入两个存储系统,并保持一致性。

image.png

image.png

实现步骤

1. 创建数据模型

在MySQL和Elasticsearch中创建相同的数据模型,以便能够在两个系统之间进行数据同步。

 

2. 数据写入MySQL

在服务中实现数据写入MySQL的逻辑。这通常是通过ORM(对象关系映射)工具或直接使用数据库连接来实现的。

 

3. 数据写入Elasticsearch

在数据写入MySQL的同时,使用Elasticsearch的客户端库将相同的数据写入Elasticsearch中。确保数据在Elasticsearch中的索引结构与MySQL中的表结构保持一致。

 

4. 数据同步

一种常见的做法是使用消息队列来实现MySQL和Elasticsearch之间的数据同步。每当数据在MySQL中发生变化时,将变化的数据发送到消息队列中,然后有一个消费者从消息队列中读取消息,并将数据同步到Elasticsearch中。

 

5. 异常处理

在数据写入和同步的过程中,需要考虑异常情况的处理。例如,如果数据写入MySQL成功但写入Elasticsearch失败,应该有相应的重试机制或者错误处理策略。

 

6. 性能优化

对于大规模的数据写入和同步,需要考虑性能优化的问题。可以采取一些措施,如批量写入、增量更新等,以提高系统的性能和稳定性。

 

总结

通过以上设计和实现步骤,可以实现将数据同时写入MySQL和Elasticsearch的功能,从而充分发挥各自的优势,满足不同的需求。在实际应用中,根据具体情况和业务需求,可以进一步优化和调整这个设计方案。

 

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
4天前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之写doris,mysql字段变更,重新提交才能同步新字段数据吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
18小时前
|
消息中间件 存储 关系型数据库
【微服务】mysql + elasticsearch数据双写设计与实现
【微服务】mysql + elasticsearch数据双写设计与实现
|
1天前
|
SQL 分布式计算 关系型数据库
使用 Spark 抽取 MySQL 数据到 Hive 时某列字段值出现异常(字段错位)
在 MySQL 的 `order_info` 表中,包含 `order_id` 等5个字段,主要存储订单信息。执行按 `create_time` 降序的查询,显示了部分结果。在 Hive 中复制此表结构时,所有字段除 `order_id` 外设为 `string` 类型,并添加了 `etl_date` 分区字段。然而,由于使用逗号作为字段分隔符,当 `address` 字段含逗号时,数据写入 Hive 出现错位,导致 `create_time` 值变为中文字符串。问题解决方法包括更换字段分隔符或使用 Hive 默认分隔符 `\u0001`。此案例提醒在建表时需谨慎选择字段分隔符。
|
4天前
|
SQL 关系型数据库 MySQL
解决向MySQL中导入文件中的 数据时出现的问题~
解决向MySQL中导入文件中的 数据时出现的问题~
|
4天前
|
SQL 关系型数据库 MySQL
mysql插入500条数据sql语句
【5月更文挑战第12天】
|
4天前
|
canal NoSQL 关系型数据库
实时计算 Flink版产品使用合集之如何在ElasticSearch中查看同步的数据
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4天前
|
Kubernetes 关系型数据库 MySQL
实时计算 Flink版产品使用合集之在Kubernetes(k8s)中同步MySQL变更到Elasticsearch该怎么操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4天前
|
关系型数据库 MySQL Java
实时计算 Flink版产品使用合集之同步MySQL数据到Hologres时,配置线程池的大小该考虑哪些
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
12天前
|
Java Maven 开发工具
【ElasticSearch 】IK 分词器安装
【ElasticSearch 】IK 分词器安装
27 1
|
12天前
|
数据可视化 索引
elasticsearch head、kibana 安装和使用
elasticsearch head、kibana 安装和使用

热门文章

最新文章