m基于深度学习的16QAM调制解调系统相位检测和补偿算法matlab仿真

简介: m基于深度学习的16QAM调制解调系统相位检测和补偿算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
随着通信技术的飞速发展,高阶调制格式如16QAM(16-Quadrature Amplitude Modulation,16进制正交幅度调制)在高速数据传输中得到了广泛应用。然而,由于信道失真、噪声干扰等因素,接收端往往面临相位偏移和信号失真等问题。为了解决这些问题,基于深度学习的相位检测和补偿算法应运而生。

2.1 16QAM调制解调原理

    16QAM是一种将每4个比特映射到一个复数符号上的调制方式。在星座图上,16QAM有16个可能的点,每个点对应一个特定的幅度和相位组合。调制过程就是将输入的比特流按照一定规则映射到这些点上,而解调过程则是从接收到的信号中恢复出原始的比特流。在实际通信系统中,由于信道特性、振荡器不稳定等原因,接收端收到的信号往往会发生相位偏移。这种偏移会导致解调器无法准确地将接收到的信号映射回原始的比特流,从而产生误码。

     无线通信系统中存在随机相位噪声,导致接收到的信号发生相位偏移,严重影响解调精度。设接收到的16QAM信号为:

b7a3a78ac92dd2f7a6c2ee4137a47b87_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 基于深度学习的相位检测和补偿算法

    为了解决相位偏移问题,可以采用基于深度学习的相位检测和补偿算法。该算法通常包括两个主要步骤:相位检测和相位补偿。

   相位检测的目标是从接收到的信号中估计出相位偏移量。传统的方法通常基于最大似然估计或最小均方误差准则进行设计,但在复杂信道条件下性能受限。而基于深度学习的方法则能够通过学习大量数据来自动提取特征并进行相位偏移量的估计。

   具体来说,可以采用一个深度神经网络(DNN)来实现相位检测。该网络的输入是接收到的信号样本,输出是估计的相位偏移量。网络的结构可以根据具体任务进行设计,例如可以使用卷积神经网络(CNN)来提取信号的时域特征,或者使用循环神经网络(RNN)来处理序列数据。

   在训练阶段,需要准备大量带有标签的训练数据。标签是真实的相位偏移量,可以通过仿真或实际测量得到。然后,使用反向传播算法等优化方法来训练网络参数,使得网络能够准确地从输入信号中估计出相位偏移量。
   相位补偿的目标是根据估计出的相位偏移量对接收到的信号进行校正,以消除相位偏移的影响。传统的补偿方法通常是通过旋转接收到的信号来实现的。而在基于深度学习的算法中,可以将相位补偿过程集成到神经网络中。

     在得到较为准确的相位估计后,利用该信息对原始接收到的信号进行相位补偿。假设经过深度学习网络得到的相位估计为:

8ec73e97ca50c6ed6c47612c72f07d5b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   具体来说,可以在神经网络的输出端添加一个旋转矩阵,该矩阵根据估计出的相位偏移量对接收到的信号进行旋转校正。这样,神经网络的输出就是经过相位补偿后的信号,可以直接用于后续的解调处理。

3.MATLAB核心程序
```for i = 1:length(SNR)
i
for j = 1:10
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1exp(sqrt(-1)phase);

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2*exp(-sqrt(-1)*mean2(offset2));
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('16QAM无相位补偿误码率','16QAM相位补偿误码率');
```

相关文章
|
3月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
168 22
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
304 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
112 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
10天前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
40 8
|
1月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
1月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
1月前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
2月前
|
算法 安全 Go
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
本文探讨了如何利用 Go 语言中的 Bloom Filter 算法提升公司局域网管理系统的性能。Bloom Filter 是一种高效的空间节省型数据结构,适用于快速判断元素是否存在于集合中。文中通过具体代码示例展示了如何在 Go 中实现 Bloom Filter,并应用于局域网的 IP 访问控制,显著提高系统响应速度和安全性。随着网络规模扩大和技术进步,持续优化算法和结合其他安全技术将是企业维持网络竞争力的关键。
69 2
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
|
2月前
|
数据采集 人工智能 编解码
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
74 9
|
2月前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。

热门文章

最新文章

下一篇
oss创建bucket