低照度增强算法(图像增强+目标检测+代码)

简介: 低照度增强算法(图像增强+目标检测+代码)

本文介绍

在增强低光图像时,许多深度学习算法基于Retinex理论。然而,Retinex模型并没有考虑到暗部隐藏的损坏或者由光照过程引入的影响。此外,这些方法通常需要繁琐的多阶段训练流程,并依赖于卷积神经网络,在捕捉长距离依赖关系方面存在局限性。


本文提出了一种简单而又有原则性的单阶段Retinex-based框架(ORF)。ORF首先估计照明信息来点亮低光图像,然后恢复损坏以生成增强的图像。我们设计了一个基于照明指导的Transformer(IGT),利用照明表示来指导不同光照条件下区域之间的非局部交互建模。将IGT插入到ORF中,我们得到了我们的算法Retinexformer。


全面的定量和定性实验证明了我们的Retinexformer在13个基准测试上明显优于现有的方法。通过用户研究和在低光物体检测上的应用,也揭示了我们方法的潜在实际价值。


结果展示

上图可以看出,图像低照度增强,显著增强了目标检测的recall值以及置信度,因此图像增强对目标检测、目标跟踪等计算机视觉领域有重要意义。

代码运行

1. 创建环境

  • 创建Conda环境
conda create -n Retinexformer python=3.7
conda activate Retinexformer
  • 安装依赖项
conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install matplotlib scikit-learn scikit-image opencv-python yacs joblib natsort h5py tqdm tensorboard
pip install einops gdown addict future lmdb numpy pyyaml requests scipy yapf lpips
  • 安装BasicSR
python setup.py develop --no_cuda_ext

以上是创建和配置Retinexformer环境的步骤。首先,使用Conda创建一个名为Retinexformer的环境,并激活该环境。然后,通过conda和pip安装所需的依赖项,包括PyTorch、matplotlib、scikit-learn等。最后,使用python命令运行setup.py文件来安装BasicSR。完成这些步骤后,即可进入Retinexformer环境并开始使用。

4e7113ba18741e39df64530df14471eb_22241b47659943efb8f8c8f9dd4b8000.png

2. 准备数据集

下载以下数据集:

LOL-v1 百度网盘 (提取码: cyh2), 谷歌网盘

LOL-v2 百度网盘 (提取码: cyh2), 谷歌网盘

SID 百度网盘 (提取码: gplv), 谷歌网盘

SMID 百度网盘 (提取码: btux), 谷歌网盘

SDSD-indoor 百度网盘 (提取码: jo1v), 谷歌网盘

SDSD-outdoor 百度网盘 (提取码: uibk), 谷歌网盘

MIT-Adobe FiveK 百度网盘 (提取码:cyh2), 谷歌网盘, 官方网站

请按照sRGB设置处理MIT Adobe FiveK数据集。

然后按照以下方式组织这些数据集:

  |--data   
    |    |--LOLv1
    |    |    |--Train
    |    |    |    |--input
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |--Test
    |    |    |    |--input
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |--LOLv2
    |    |    |--Real_captured
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |--Synthetic
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |--SDSD
    |    |    |--indoor_static_np
    |    |    |    |--input
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |--outdoor_static_np
    |    |    |    |--input
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |--SID
    |    |    |--short_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--long_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--SMID
    |    |    |--SMID_LQ_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--SMID_Long_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--FiveK
    |    |    |--train
    |    |    |    |--input
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |--test
    |    |    |    |--input
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...

3 测试

下载我们的模型文件从百度网盘 (提取码: cyh2) 或 谷歌网盘,然后将它们放在名为 pretrained_weights 的文件夹中。

下面是测试命令的示例:

# LOL-v1
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1

# LOL-v2-real
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_real.yml --weights pretrained_weights/LOL_v2_real.pth --dataset LOL_v2_real

# LOL-v2-synthetic
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml --weights pretrained_weights/LOL_v2_synthetic.pth --dataset LOL_v2_synthetic

# SID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SID.yml --weights pretrained_weights/SID.pth --dataset SID

# SMID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SMID.yml --weights pretrained_weights/SMID.pth --dataset SMID

# SDSD-indoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_indoor.yml --weights pretrained_weights/SDSD_indoor.pth --dataset SDSD_indoor

# SDSD-outdoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_outdoor.yml --weights pretrained_weights/SDSD_outdoor.pth --dataset SDSD_outdoor

# FiveK
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_FiveK.yml --weights pretrained_weights/FiveK.pth --dataset FiveK

4 训练

# LOL-v1
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v1.yml

# LOL-v2-real-
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v2_real.yml

# LOL-v2-synthetic
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml

# SID1. Create Envirement
Make Conda Environment

conda create -n Retinexformer python=3.7
conda activate Retinexformer
Install Dependencies

conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install matplotlib scikit-learn scikit-image opencv-python yacs joblib natsort h5py tqdm tensorboard
pip install einops gdown addict future lmdb numpy pyyaml requests scipy yapf lpips
Install BasicSR

python setup.py develop --no_cuda_ext
 

2. Prepare Dataset
Download the following datasets:

LOL-v1 Baidu Disk (code: cyh2), Google Drive

LOL-v2 Baidu Disk (code: cyh2), Google Drive

SID Baidu Disk (code: gplv), Google Drive

SMID Baidu Disk (code: btux), Google Drive

SDSD-indoor Baidu Disk (code: jo1v), Google Drive

SDSD-outdoor Baidu Disk (code: uibk), Google Drive

MIT-Adobe FiveK Baidu Disk (code:cyh2), Google Drive, Official

Please process the MIT Adobe FiveK dataset following the sRGB setting

Then organize these datasets as follows:
    |--data   
    |    |--LOLv1
    |    |    |--Train
    |    |    |    |--input
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |--Test
    |    |    |    |--input
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |--LOLv2
    |    |    |--Real_captured
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |--Synthetic
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |--SDSD
    |    |    |--indoor_static_np
    |    |    |    |--input
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |--outdoor_static_np
    |    |    |    |--input
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |--SID
    |    |    |--short_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--long_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--SMID
    |    |    |--SMID_LQ_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--SMID_Long_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--FiveK
    |    |    |--train
    |    |    |    |--input
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |--test
    |    |    |    |--input
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
</details>

We also provide download links for LIME, NPE, MEF, DICM, and VV datasets that have no ground truth:

Baidu Disk (code: cyh2)
 or Google Drive

&nbsp;                    

3. Testing
Download our models from Baidu Disk (code: cyh2) or Google Drive. Put them in folder pretrained_weights

# LOL-v1
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1
# LOL-v2-real
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_real.yml --weights pretrained_weights/LOL_v2_real.pth --dataset LOL_v2_real
# LOL-v2-synthetic
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml --weights pretrained_weights/LOL_v2_synthetic.pth --dataset LOL_v2_synthetic
# SID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SID.yml --weights pretrained_weights/SID.pth --dataset SID
# SMID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SMID.yml --weights pretrained_weights/SMID.pth --dataset SMID
# SDSD-indoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_indoor.yml --weights pretrained_weights/SDSD_indoor.pth --dataset SDSD_indoor
# SDSD-outdoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_outdoor.yml --weights pretrained_weights/SDSD_outdoor.pth --dataset SDSD_outdoor
# FiveK
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_FiveK.yml --weights pretrained_weights/FiveK.pth --dataset FiveK
&nbsp;

4. Training
Feel free to check our training logs from Baidu Disk (code: cyh2) or Google Drive


python3 basicsr/train.py --opt Options/RetinexFormer_SID.yml

# SMID
python3 basicsr/train.py --opt Options/RetinexFormer_SMID.yml

# SDSD-indoor
python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_indoor.yml

# SDSD-outdoorxunlian
python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_outdoor.yml
在增强低光图像时,许多深度学习算法基于Retinex理论。然而,Retinex模型并没有考虑到暗部隐藏的损坏或者由光照过程引入的影响。此外,这些方法通常需要繁琐的多阶段训练流程,并依赖于卷积神经网络,在捕捉长距离依赖关系方面存在局限性。

本文提出了一种简单而又有原则性的单阶段Retinex-based框架(ORF)。ORF首先估计照明信息来点亮低光图像,然后恢复损坏以生成增强的图像。我们设计了一个基于照明指导的Transformer(IGT),利用照明表示来指导不同光照条件下区域之间的非局部交互建模。将IGT插入到ORF中,我们得到了我们的算法Retinexformer。

全面的定量和定性实验证明了我们的Retinexformer在13个基准测试上明显优于现有的方法。通过用户研究和在低光物体检测上的应用,也揭示了我们方法的潜在实际价值。
# FiveK
python3 basicsr/train.py --opt Options/RetinexFormer_FiveK.yml

5 图像评价指标对比

相关文章
|
22天前
|
机器学习/深度学习 算法 PyTorch
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
165 1
|
29天前
|
算法 安全 C语言
使用C语言实现DES算法代码
使用C语言实现DES算法代码
|
2月前
|
人工智能 算法 数据可视化
路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-2
路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-2
172 0
|
2月前
|
机器学习/深度学习 存储 监控
yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)
yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)
146 1
|
13天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
1月前
|
机器学习/深度学习 算法 Python
傅里叶变换算法和Python代码实现
傅立叶变换是物理学家、数学家、工程师和计算机科学家常用的最有用的工具之一。本篇文章我们将使用Python来实现一个连续函数的傅立叶变换。
29 8
|
2月前
|
机器学习/深度学习 监控 算法
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
102 1
|
2月前
|
存储 人工智能 算法
路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-1
路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-1
65 0
|
23天前
|
机器学习/深度学习 算法 计算机视觉
|
23天前
|
存储 机器学习/深度学习 算法
C语言代码实现数据结构与算法
以上代码中,哈希表使用链表解决哈希冲突,每个链表节点包含一个键值对。hash函数用于计算键值对应的哈希值,insert函数用于向哈希表中插入一个键值对,若当前位置为空,则直接插入;否则,将新节点插入到链表末尾。search函数用于在哈希表中查找指定键值的值,若存在则返回其值,否则返回-1。
32 1