低照度增强算法(图像增强+目标检测+代码)

简介: 低照度增强算法(图像增强+目标检测+代码)

本文介绍

在增强低光图像时,许多深度学习算法基于Retinex理论。然而,Retinex模型并没有考虑到暗部隐藏的损坏或者由光照过程引入的影响。此外,这些方法通常需要繁琐的多阶段训练流程,并依赖于卷积神经网络,在捕捉长距离依赖关系方面存在局限性。


本文提出了一种简单而又有原则性的单阶段Retinex-based框架(ORF)。ORF首先估计照明信息来点亮低光图像,然后恢复损坏以生成增强的图像。我们设计了一个基于照明指导的Transformer(IGT),利用照明表示来指导不同光照条件下区域之间的非局部交互建模。将IGT插入到ORF中,我们得到了我们的算法Retinexformer。


全面的定量和定性实验证明了我们的Retinexformer在13个基准测试上明显优于现有的方法。通过用户研究和在低光物体检测上的应用,也揭示了我们方法的潜在实际价值。


结果展示

上图可以看出,图像低照度增强,显著增强了目标检测的recall值以及置信度,因此图像增强对目标检测、目标跟踪等计算机视觉领域有重要意义。

代码运行

1. 创建环境

  • 创建Conda环境
conda create -n Retinexformer python=3.7
conda activate Retinexformer
  • 安装依赖项
conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install matplotlib scikit-learn scikit-image opencv-python yacs joblib natsort h5py tqdm tensorboard
pip install einops gdown addict future lmdb numpy pyyaml requests scipy yapf lpips
  • 安装BasicSR
python setup.py develop --no_cuda_ext

以上是创建和配置Retinexformer环境的步骤。首先,使用Conda创建一个名为Retinexformer的环境,并激活该环境。然后,通过conda和pip安装所需的依赖项,包括PyTorch、matplotlib、scikit-learn等。最后,使用python命令运行setup.py文件来安装BasicSR。完成这些步骤后,即可进入Retinexformer环境并开始使用。

4e7113ba18741e39df64530df14471eb_22241b47659943efb8f8c8f9dd4b8000.png

2. 准备数据集

下载以下数据集:

LOL-v1 百度网盘 (提取码: cyh2), 谷歌网盘

LOL-v2 百度网盘 (提取码: cyh2), 谷歌网盘

SID 百度网盘 (提取码: gplv), 谷歌网盘

SMID 百度网盘 (提取码: btux), 谷歌网盘

SDSD-indoor 百度网盘 (提取码: jo1v), 谷歌网盘

SDSD-outdoor 百度网盘 (提取码: uibk), 谷歌网盘

MIT-Adobe FiveK 百度网盘 (提取码:cyh2), 谷歌网盘, 官方网站

请按照sRGB设置处理MIT Adobe FiveK数据集。

然后按照以下方式组织这些数据集:

  |--data   
    |    |--LOLv1
    |    |    |--Train
    |    |    |    |--input
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |--Test
    |    |    |    |--input
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |--LOLv2
    |    |    |--Real_captured
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |--Synthetic
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |--SDSD
    |    |    |--indoor_static_np
    |    |    |    |--input
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |--outdoor_static_np
    |    |    |    |--input
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |--SID
    |    |    |--short_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--long_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--SMID
    |    |    |--SMID_LQ_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--SMID_Long_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--FiveK
    |    |    |--train
    |    |    |    |--input
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |--test
    |    |    |    |--input
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...

3 测试

下载我们的模型文件从百度网盘 (提取码: cyh2) 或 谷歌网盘,然后将它们放在名为 pretrained_weights 的文件夹中。

下面是测试命令的示例:

# LOL-v1
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1

# LOL-v2-real
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_real.yml --weights pretrained_weights/LOL_v2_real.pth --dataset LOL_v2_real

# LOL-v2-synthetic
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml --weights pretrained_weights/LOL_v2_synthetic.pth --dataset LOL_v2_synthetic

# SID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SID.yml --weights pretrained_weights/SID.pth --dataset SID

# SMID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SMID.yml --weights pretrained_weights/SMID.pth --dataset SMID

# SDSD-indoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_indoor.yml --weights pretrained_weights/SDSD_indoor.pth --dataset SDSD_indoor

# SDSD-outdoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_outdoor.yml --weights pretrained_weights/SDSD_outdoor.pth --dataset SDSD_outdoor

# FiveK
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_FiveK.yml --weights pretrained_weights/FiveK.pth --dataset FiveK

4 训练

# LOL-v1
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v1.yml

# LOL-v2-real-
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v2_real.yml

# LOL-v2-synthetic
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml

# SID1. Create Envirement
Make Conda Environment

conda create -n Retinexformer python=3.7
conda activate Retinexformer
Install Dependencies

conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install matplotlib scikit-learn scikit-image opencv-python yacs joblib natsort h5py tqdm tensorboard
pip install einops gdown addict future lmdb numpy pyyaml requests scipy yapf lpips
Install BasicSR

python setup.py develop --no_cuda_ext
 

2. Prepare Dataset
Download the following datasets:

LOL-v1 Baidu Disk (code: cyh2), Google Drive

LOL-v2 Baidu Disk (code: cyh2), Google Drive

SID Baidu Disk (code: gplv), Google Drive

SMID Baidu Disk (code: btux), Google Drive

SDSD-indoor Baidu Disk (code: jo1v), Google Drive

SDSD-outdoor Baidu Disk (code: uibk), Google Drive

MIT-Adobe FiveK Baidu Disk (code:cyh2), Google Drive, Official

Please process the MIT Adobe FiveK dataset following the sRGB setting

Then organize these datasets as follows:
    |--data   
    |    |--LOLv1
    |    |    |--Train
    |    |    |    |--input
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |--Test
    |    |    |    |--input
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |--LOLv2
    |    |    |--Real_captured
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |--Synthetic
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |--SDSD
    |    |    |--indoor_static_np
    |    |    |    |--input
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |--outdoor_static_np
    |    |    |    |--input
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |--SID
    |    |    |--short_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--long_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--SMID
    |    |    |--SMID_LQ_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--SMID_Long_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--FiveK
    |    |    |--train
    |    |    |    |--input
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |--test
    |    |    |    |--input
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
</details>

We also provide download links for LIME, NPE, MEF, DICM, and VV datasets that have no ground truth:

Baidu Disk (code: cyh2)
 or Google Drive

&nbsp;                    

3. Testing
Download our models from Baidu Disk (code: cyh2) or Google Drive. Put them in folder pretrained_weights

# LOL-v1
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1
# LOL-v2-real
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_real.yml --weights pretrained_weights/LOL_v2_real.pth --dataset LOL_v2_real
# LOL-v2-synthetic
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml --weights pretrained_weights/LOL_v2_synthetic.pth --dataset LOL_v2_synthetic
# SID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SID.yml --weights pretrained_weights/SID.pth --dataset SID
# SMID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SMID.yml --weights pretrained_weights/SMID.pth --dataset SMID
# SDSD-indoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_indoor.yml --weights pretrained_weights/SDSD_indoor.pth --dataset SDSD_indoor
# SDSD-outdoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_outdoor.yml --weights pretrained_weights/SDSD_outdoor.pth --dataset SDSD_outdoor
# FiveK
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_FiveK.yml --weights pretrained_weights/FiveK.pth --dataset FiveK
&nbsp;

4. Training
Feel free to check our training logs from Baidu Disk (code: cyh2) or Google Drive


python3 basicsr/train.py --opt Options/RetinexFormer_SID.yml

# SMID
python3 basicsr/train.py --opt Options/RetinexFormer_SMID.yml

# SDSD-indoor
python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_indoor.yml

# SDSD-outdoorxunlian
python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_outdoor.yml
在增强低光图像时,许多深度学习算法基于Retinex理论。然而,Retinex模型并没有考虑到暗部隐藏的损坏或者由光照过程引入的影响。此外,这些方法通常需要繁琐的多阶段训练流程,并依赖于卷积神经网络,在捕捉长距离依赖关系方面存在局限性。

本文提出了一种简单而又有原则性的单阶段Retinex-based框架(ORF)。ORF首先估计照明信息来点亮低光图像,然后恢复损坏以生成增强的图像。我们设计了一个基于照明指导的Transformer(IGT),利用照明表示来指导不同光照条件下区域之间的非局部交互建模。将IGT插入到ORF中,我们得到了我们的算法Retinexformer。

全面的定量和定性实验证明了我们的Retinexformer在13个基准测试上明显优于现有的方法。通过用户研究和在低光物体检测上的应用,也揭示了我们方法的潜在实际价值。
# FiveK
python3 basicsr/train.py --opt Options/RetinexFormer_FiveK.yml

5 图像评价指标对比

相关文章
|
21天前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
22天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
50 1
|
1月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
1月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
1月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
41 3
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
23 0
|
16天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
22天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
下一篇
DataWorks