MySQL 面试题——日常工作中你是怎么优化SQL的?

本文涉及的产品
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: 日常工作中你是怎么优化SQL的?

可以从这几个维度回答这个问题:

加索引

避免返回不必要的数据

适当分批量进行

优化sql结构

分库分表

读写分离

1、查询SQL尽量不要使用select ,而是select具体字段。
反例子:
复制代码select
from employee;
正例子:
复制代码select id,name from employee;
理由:

只取需要的字段,节省资源、减少网络开销。
select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。

2、如果知道查询结果只有一条或者只要最大/最小一条记录,建议用limit 1
假设现在有employee员工表,要找出一个名字叫jay的人.
复制代码CREATE TABLE employee (
id int(11) NOT NULL,
name varchar(255) DEFAULT NULL,
age int(11) DEFAULT NULL,
date datetime DEFAULT NULL,
sex int(1) DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
反例:
复制代码select id,name from employee where name='jay'
正例
复制代码select id,name from employee where name='jay' limit 1;
理由:

加上limit 1后,只要找到了对应的一条记录,就不会继续向下扫描了,效率将会大大提高。
当然,如果name是唯一索引的话,是不必要加上limit 1了,因为limit的存在主要就是为了防止全表扫描,从而提高性能,如果一个语句本身可以预知不用全表扫描,有没有limit ,性能的差别并不大。

3、应尽量避免在where子句中使用or来连接条件
新建一个user表,它有一个普通索引userId,表结构如下:
复制代码CREATE TABLE user (
id int(11) NOT NULL AUTO_INCREMENT,
userId int(11) NOT NULL,
age int(11) NOT NULL,
name varchar(255) NOT NULL,
PRIMARY KEY (id),
KEY idx_userId (userId)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
假设现在需要查询userid为1或者年龄为18岁的用户,很容易有以下sql
反例:
复制代码select from user where userid=1 or age =18
正例:
复制代码//使用union all
select
from user where userid=1
union all
select * from user where age = 18

//或者分开两条sql写:
select from user where userid=1
select
from user where age = 18
理由:

使用or可能会使索引失效,从而全表扫描。

对于or+没有索引的age这种情况,假设它走了userId的索引,但是走到age查询条件时,它还得全表扫描,也就是需要三步过程: 全表扫描+索引扫描+合并
如果它一开始就走全表扫描,直接一遍扫描就完事。
mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引可能失效,看起来也合情合理。

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
6天前
|
SQL 分布式计算 监控
Sqoop数据迁移工具使用与优化技巧:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入解析Sqoop的使用、优化及面试策略。内容涵盖Sqoop基础,包括安装配置、命令行操作、与Hadoop生态集成和连接器配置。讨论数据迁移优化技巧,如数据切分、压缩编码、转换过滤及性能监控。此外,还涉及面试中对Sqoop与其他ETL工具的对比、实际项目挑战及未来发展趋势的讨论。通过代码示例展示了从MySQL到HDFS的数据迁移。本文旨在帮助读者在面试中展现Sqoop技术实力。
21 2
|
8天前
|
关系型数据库 MySQL 索引
mysql 分析5语句的优化--索引添加删除
mysql 分析5语句的优化--索引添加删除
11 0
|
14天前
|
存储 关系型数据库 MySQL
轻松入门MySQL:数据库设计之范式规范,优化企业管理系统效率(21)
轻松入门MySQL:数据库设计之范式规范,优化企业管理系统效率(21)
|
14天前
|
存储 SQL 关系型数据库
轻松入门MySQL:加速进销存!利用MySQL存储过程轻松优化每日销售统计(15)
轻松入门MySQL:加速进销存!利用MySQL存储过程轻松优化每日销售统计(15)
|
14天前
|
存储 关系型数据库 MySQL
轻松入门MySQL:优化进销存管理,掌握MySQL索引,提升系统效率(11)
轻松入门MySQL:优化进销存管理,掌握MySQL索引,提升系统效率(11)
|
8天前
|
SQL 缓存 关系型数据库
mysql性能优化-慢查询分析、优化索引和配置
mysql性能优化-慢查询分析、优化索引和配置
75 0
|
14天前
|
存储 关系型数据库 MySQL
MySQL数据库性能大揭秘:表设计优化的高效策略(优化数据类型、增加冗余字段、拆分表以及使用非空约束)
MySQL数据库性能大揭秘:表设计优化的高效策略(优化数据类型、增加冗余字段、拆分表以及使用非空约束)
|
9天前
|
SQL 存储 关系型数据库
【MySQL实战笔记】02.一条SQL更新语句是如何执行的-2
【4月更文挑战第5天】两阶段提交是为确保`redo log`和`binlog`逻辑一致,避免数据不一致。若先写`redo log`, crash后数据可能丢失,导致恢复后状态错误;若先写`binlog`,crash则可能导致重复事务,影响数据库一致性。一天一备相较于一周一备,能缩短“最长恢复时间”,但需权衡额外的存储成本。
15 1
|
20天前
|
Java 程序员
java线程池讲解面试
java线程池讲解面试
37 1
|
2月前
|
存储 关系型数据库 MySQL
2024年Java秋招面试必看的 | MySQL调优面试题
随着系统用户量的不断增加,MySQL 索引的重要性不言而喻,对于后端工程师,只有在了解索引及其优化的规则,并应用于实际工作中后,才能不断的提升系统性能,开发出高性能、高并发和高可用的系统。 今天小编首先会跟大家分享一下MySQL 索引中的各种概念,然后介绍优化索引的若干条规则,最后利用这些规则,针对面试中常考的知识点,做详细的实例分析。
236 0
2024年Java秋招面试必看的 | MySQL调优面试题

推荐镜像

更多