基于自适应支持向量机的matlab建模与仿真,不使用matlab的SVM工具箱函数

简介: 基于自适应支持向量机的matlab建模与仿真,不使用matlab的SVM工具箱函数

1.算法运行效果图预览
ed66597f2462dbf0c81fd8280ad28249_82780907_202402271912520734715569_Expires=1709032972&Signature=NCqkTZbd8%2FU%2FSErwoNKjEr1DxFA%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
支持向量机是一种二分类模型,它的基本思想是在特征空间中寻找一个超平面,使得该超平面能够最大化地将两类样本分隔开。这个超平面由支持向量确定,支持向量是离超平面最近的样本点。自适应支持向量机是标准支持向量机的一种扩展,它能够根据数据的分布自动调整超平面的位置,从而更好地适应数据的变化。ASVM的核心思想是在SVM的基础上引入一个自适应因子,用于调整超平面的偏移量。

   在ASVM中,自适应因子可以是一个与样本点位置相关的函数,用于动态地调整超平面的偏移量。这个函数可以根据不同的应用场景来设计,例如可以考虑样本点的密度、距离等因素。

    ASVM的求解过程与标准的SVM类似,可以采用拉格朗日乘子法将原问题转化为对偶问题,然后通过求解对偶问题得到原问题的解。具体的求解过程可以参考标准的SVM求解方法。需要注意的是,由于引入了自适应因子,ASVM的求解过程可能会比标准的SVM更加复杂。此外,如何设计合适的自适应因子也是ASVM研究的一个重要问题。

    ASVM在许多领域都有广泛的应用,例如文本分类、图像识别、生物信息学等。由于ASVM能够根据数据的分布自动调整超平面的位置,因此在处理不平衡数据、噪声数据等问题时具有一定的优势。

4.部分核心程序

subplot(131);
for i = 1:Class_Num
    %测试数据设置为1维,2维,或者3维,多维测试数据不方便观察
    Nums= 10+round(Num*rand(1))+1;
    Xo  = 3.2*floor((i+1)/2) + randn(1,Nums);
    Yo  = 3.2*mod(i,2)       + randn(1,Nums);
    Lo  = (2*(i-1)-1)*ones(1,Nums);
    Xt  = [Xt,Xo];
    Yt  = [Yt,Yo];  
    Lt  = [Lt,Lo];
    plot(Xo,Yo,colors{1});
    hold on;
end
title('原始数据');  
Test_Dat = [Xt;Yt]; 
Category = Lt;
axis square;
axis([-5,10,-5,10]);


%普通2SVM
%普通2SVM
subplot(132);
x       = Test_Dat;
y       = Category;
[w1,b1] = func_2svm(x,y);
title(['普通2SVM分类数据']);
axis square;

%论文算法的2SVM
%论文算法的2SVM
subplot(133);
x       = Test_Dat;
y       = Category;
[w2,b2] = func_2svm_new(x,y);
title(['改进2SVM分类数据']);
axis square;
相关文章
|
3天前
|
算法 数据安全/隐私保护
泵浦光与斯托克斯光相遇耦合效应的matlab模拟与仿真
本程序使用MATLAB2022A模拟泵浦光与斯托克斯光在非线性光学材料中的耦合效应,基于拉曼散射原理。通过非线性薛定谔方程描述两者相互作用,实现能量转换与放大。核心代码展示了时间与距离上的光强变化,最终生成动态图像展示耦合过程。完整程序无水印,运行结果如附图所示。该仿真有助于理解非线性光学现象及其应用。
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
2天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
285 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
170 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
151 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
10月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
10月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
10月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)