Flink 提供了与 Kafka 集成的官方 Connector,使得 Flink 能够消费 Kafka 数据

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【2月更文挑战第6天】Flink 提供了与 Kafka 集成的官方 Connector,使得 Flink 能够消费 Kafka 数据

Apache Flink 是一个开源的分布式流处理框架,自 1.11 版本起,Flink 提供了与 Kafka 集成的官方 Connector,使得 Flink 能够消费 Kafka 数据。在 Flink 1.14.4 版本中,确实支持将 Kafka 偏移量保存在外部系统,如Kafka本身,并且可以手动维护这些偏移量。

Flink Kafka Consumer 允许通过不同的设置模式来控制如何从 Kafka 主题中读取数据。例如,使用 setStartFromGroupOffsets() 方法,Flink 将从消费者组上次提交的偏移量开始消费。而 setStartFromEarliest() 则会从主题最早的记录开始消费,丢弃已提交的偏移量。另外,setStartFromLatest() 方法使得 Flink 从最新的记录开始消费。此外,还可以通过 setStartFromTimestamp() 方法指定从某个时间戳开始消费。

如果需要更精细的控制,可以使用 setStartFromSpecificOffsets(specificStartOffsets) 方法,该方法需要一个映射 Map<KafkaTopicPartition, Long> 作为参数,其中包含了每个分区开始的偏移量。

当启动了 Flink 的检查点(Checkpoint)机制时,Flink Kafka Consumer 会自动将偏移量保存在检查点状态中。这意味着,如果发生故障,Flink 可以从最后一个检查点恢复消费,从而确保数据的一致性和可靠性。为此,你可以配置 enableCheckpointing 来启用检查点,并设置 auto.commit.interval.ms 为 Kafka 消费者的自动提交偏移量的间隔。

此外,Flink Kafka Consumer 提供了 setCommitOffsetsOnCheckpoints(true) 方法,用于在每次检查点完成后自动提交偏移量到 Kafka。这确保了 Kafka 中的 committed offset 与 Flink 状态后端中的 offset 保持一致。

不过,值得注意的是,如果 Flink 作业发生了故障,且没有从检查点恢复,而是直接重启,Flink 将尝试从上一次提交的偏移量或配置的偏移量重新开始消费。这种情况下,就需要确保 Kafka 中有可用的偏移量供 Flink 恢复。

综上所述,Flink 1.14.4 版本支持将 Kafka 偏移量保存在外部系统,并可以手动维护这些偏移量,结合检查点机制,可以确保数据的一致性和可靠性。

目录
相关文章
|
4月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
441 0
|
6月前
|
人工智能 安全 Dubbo
Spring AI 智能体通过 MCP 集成本地文件数据
MCP 作为一款开放协议,直接规范了应用程序如何向 LLM 提供上下文。MCP 就像是面向 AI 应用程序的 USB-C 端口,正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一个将 AI 模型连接到不同数据源和工具的标准化方法。
2784 70
|
5月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
498 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
5月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
1146 43
|
6月前
|
机器学习/深度学习 PyTorch 测试技术
LossVal:一种集成于损失函数的高效数据价值评估方法
LossVal是一种创新的机器学习方法,通过在损失函数中引入实例级权重,直接在训练过程中评估数据点的重要性,避免了传统方法中反复重训练模型的高计算成本。该方法适用于回归和分类任务,利用最优传输距离优化权重,确保模型更多地从高质量数据中学习。实验表明,LossVal在噪声样本检测和高价值数据点移除等任务上表现优异,具有更低的时间复杂度和更稳定的性能。论文及代码已开源,为数据价值评估提供了高效的新途径。
149 13
LossVal:一种集成于损失函数的高效数据价值评估方法
|
5月前
|
存储 人工智能 NoSQL
Airweave:快速集成应用数据打造AI知识库的开源平台,支持多源整合和自动同步数据
Airweave 是一个开源工具,能够将应用程序的数据同步到图数据库和向量数据库中,实现智能代理检索。它支持无代码集成、多租户支持和自动同步等功能。
293 14
|
6月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
8月前
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
416 5
|
8月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
184 1
|
9月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
326 1

热门文章

最新文章