实时计算 Flink版产品使用问题之在消费Kafka的Avro消息,如何配置FlinkKafka消费者的相关参数

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:FlinkSQL消费avro格式的kafka消息,这两个配置 Kafka消费者应该怎么配置啊?

FlinkSQL消费avro格式的kafka消息,

,想用DataStreamAPi方式消费,这两个配置 Kafka消费者应该怎么配置啊?

这样对吗?



参考答案:

在Flink中消费Kafka的Avro消息,需要配置Flink Kafka消费者的相关参数。首先,需要使用FlinkKafkaConsumer011来定义消费者组ID和主题信息。然后,设置Kafka消费者的Value Format为Avro格式,用于反序列化从Kafka中读取的消息。具体的配置代码如下:

val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "test")
properties.setProperty("value.format", "avro")
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("value.deserializer", "io.confluent.kafka.serializers.KafkaAvroDeserializer")
properties.setProperty("schema.registry.url", "http://localhost:8081")

其中,bootstrap.servers是Kafka服务器地址,group.id是消费者组ID,value.format是Value的序列化格式,这里设置为"avro",表示使用Avro格式。key.deserializervalue.deserializer分别设置了Key和Value的反序列化类。最后,schema.registry.url指定了Avro schema的注册中心地址。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/589797



问题二:flink 在watemark内数据乱序,会对数据使用event_time重新排序并输出嘛?

已解决

flink 在watemark内数据乱序,会对数据使用event_time重新排序并输出嘛?



参考答案:

是的,Flink 在 Watermark 内数据乱序时会使用 Event Time 进行重新排序,并根据排序后的顺序输出数据。这是 Flink 处理乱序事件的一种机制,确保在事件时间上按照正确的顺序进行处理。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/589796



问题三:flink web ui里面为啥Sink: clean_commits 这个步骤并行度是1?

我通过oracle的connector往hudi插入数据,flink web ui里面为啥Sink: clean_commits 这个步骤并行度是1,我设置的默认并行度是5,但是它改变不了?



参考答案:

改不了



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/589795



问题四:flink checkpoint为什么会导致下游kafka数据增多?

flink checkpoint为什么会导致下游kafka数据增多?



参考答案:

Flink Checkpoint 会导致下游 Kafka 数据增多的原因可能是:

  1. Checkpoint 会将当前 Flink 作业的状态信息保存到外部存储系统中,如 HDFS、S3 等。这些状态信息包括了作业的进度、状态、元数据等信息。当 Checkpoint 发生时,这些状态信息会被写入到 Checkpoint 文件中。
  2. Checkpoint 文件会被发送到 Kafka 主题中。Kafka 是一个分布式消息系统,用于处理和传输大量实时数据。当 Checkpoint 发生时,Checkpoint 文件会被发送到 Kafka 主题中。这可能会导致 Kafka 中的数据量增加,因为每个 Checkpoint 都会生成一个新的 Checkpoint 文件。
  3. Checkpoint 文件可能会被多个 Flink JobManager 实例处理。在 Flink 集群中,JobManager 负责管理作业的执行和状态。当 Checkpoint 发生时,不同的 JobManager 实例可能会同时处理 Checkpoint 文件。这可能会导致 Kafka 中的数据量增加,因为每个 JobManager 实例都会生成一个新的 Checkpoint 文件。
  4. Checkpoint 文件可能会被多个 TaskManager 实例处理。在 Flink 集群中,TaskManager 负责执行作业的任务。当 Checkpoint 发生时,不同的 TaskManager 实例可能会同时处理 Checkpoint 文件。这可能会导致 Kafka 中的数据量增加,因为每个 TaskManager 实例都会生成一个新的 Checkpoint 文件。

总之,Flink Checkpoint 会导致下游 Kafka 数据增多,主要是因为 Checkpoint 会将作业的状态信息写入到外部存储系统中,并将这些状态信息发送到 Kafka 主题中。这些操作可能会导致 Kafka 中的数据量增加。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/589794



问题五:写了一个全局静态配置,在编译器运行正常,请问下这个是什么问题?

写了一个全局静态配置,在编译器运行正常,但在flink on yarn 上获取不到自定义的全局静态变量的值,请问下这个是什么问题?



参考答案:

这个问题可能是由于Flink在YARN集群模式下,每个TaskManager都有自己的JVM实例,因此全局这个问题可能是由于Flink在YARN集群模式下,每个TaskManager都有自己的JVM实例,因此全局静态变量的值无法在所有TaskManager之间共享。

为了解决这个问题,您可以尝试将全局静态变量的值存储在外部持久化存储中,例如HDFS或数据库中,然后在TaskManager中读取该值。或者,您可以使用广播变量来共享全局静态变量的值。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/589793

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
15天前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
150 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
10天前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
|
2月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
302 0
|
3月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
420 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
4月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
7月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
289 1
|
7月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
171 1
|
9月前
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
552 9
|
9月前
|
消息中间件 负载均衡 Java
"Kafka核心机制揭秘:深入探索Producer的高效数据发布策略与Java实战应用"
【8月更文挑战第10天】Apache Kafka作为顶级分布式流处理平台,其Producer组件是数据高效发布的引擎。Producer遵循高吞吐、低延迟等设计原则,采用分批发送、异步处理及数据压缩等技术提升性能。它支持按消息键值分区,确保数据有序并实现负载均衡;提供多种确认机制保证可靠性;具备失败重试功能确保消息最终送达。Java示例展示了基本配置与消息发送流程,体现了Producer的强大与灵活性。
124 3
|
10月前
|
消息中间件 存储 Kafka
kafka 在 zookeeper 中保存的数据内容
kafka 在 zookeeper 中保存的数据内容
109 3

相关产品

  • 实时计算 Flink版