m基于码率兼容打孔LDPC码oms最小和译码算法的LDPC编译码matlab误码率仿真

简介: m基于码率兼容打孔LDPC码oms最小和译码算法的LDPC编译码matlab误码率仿真

1.算法仿真效果
matlab2022a仿真结果如下:

11d0a5ad9bdac8be1c930628fbf6b7dd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(Belief Propagation)译码算法进行迭代译码,提高了译码的准确性和可靠性。

   LDPC编码算法基于稀疏矩阵的乘积码,通过奇偶校验位来纠正传输过程中的错误。其核心思想是通过尽可能低的密度奇偶校验位来构造大量的码字,使得每个码字的校验和为0。

    设原始信息位长度为k,校验位长度为r,总码字长度为n=k+r。将原始信息位放入一个长度为k的行向量中,将校验位放入一个长度为r的列向量中。然后构建一个(n-k)×n的校验矩阵H,其中每一行是一个奇偶校验位,每一列是一个码字。

   为了实现码率兼容,引入打孔操作。打孔操作是指在码字中删除一些校验位,使得总码率在一定范围内可调。具体实现时,可以按照一定规则随机删除一些校验位,或者根据码率要求计算需要删除的校验位数。打孔操作后,可以得到一个新的校验矩阵H',其中每一行仍是一个奇偶校验位,但每一列可能不再是完整的码字。

   偏移最小和(Offset Min-Sum, OMS)算法是MS算法的一个变种,它引入了一个偏移量(offset)来改进MS算法的解码性能,尤其是在高信噪比(SNR)条件下。OMS算法通过调整传递给校验节点的消息,减少了由于MS算法近似计算造成的性能损失。

LDPC编码算法的实现步骤如下:

生成随机的(n-k)×n的校验矩阵H;
根据要求进行打孔操作,得到新的校验矩阵H';
将原始信息位按顺序写入一个长度为k的行向量中;
根据校验矩阵H'计算校验和,得到长度为r'的列向量;
将原始信息位和校验位串联起来,得到长度为n的码字向量;
将码字向量进行比特反转,得到最终的LDPC码字。

    最小和译码算法(Min-Sum Algorithm)是LDPC译码的一种简化算法,相较于标准的置信传播(Belief Propagation,BP)算法,具有更低的计算复杂度。

置信传播算法基础

   BP算法是LDPC译码的基础算法,通过迭代更新变量节点和校验节点的置信度信息来进行译码。其核心步骤包括初始化、水平步骤(变量节点到校验节点)、垂直步骤(校验节点到变量节点)和判决步骤。

最小和译码算法原理

   最小和算法在BP算法的基础上进行了简化,用最小值和次小值的运算代替了BP算法中的对数运算和乘法运算,从而降低了计算复杂度。

3.MATLAB核心程序
```% 开始仿真
for ij = 1:length(SNRs)
err_sum = 0;
err_len = 0;
for jk = 1:MTKL
[jk,ij]
%生成随机的信息位
msgs = randi(2,1,Param.B)-1;
%进行代码块分割
cbs_msg = func_cbs(msgs,Param);
%编码
[dat_code,dat_puncture] = func_ldpc_encoder(cbs_msg,Param);
%进行速率匹配
dat_match = func_rate_match(dat_code,Param);
%映射
dat_map = 2*dat_match-1;

    %通过信道
    Rec_data                = awgn(dat_map,SNRs(ij));

    %计算对数似然比
    Sigma                   = 1/10^((SNRs(ij))/10);
    llr                     = -2*Rec_data./Sigma;

    % 进行速率去匹配
    dat_dematch             = func_rate_dematch(llr,Param);
    dat_decode              = zeros(Param.C, Param.K);
    for k=1:Param.C
        dat_decode(k,:)    = func_oms_puncture(dat_dematch(k,:), Param, Iters,beta);
    end
    dat_decbs               = func_ldpc_decbs(dat_decode, Param);
    err                     = sum(abs(dat_decbs - msgs));
    err_sum                 = err_sum + err;
    %统计一个仿真块的结果
    err_len = err_len + K;
end
errors(ij) = err_sum/err_len;

end

figure;
semilogy(SNRs,errors,'b-o');
grid on
xlabel('SNR');
ylabel('error');

if Iters==1
save R1.mat SNRs errors
end
if Iters==5
save R5.mat SNRs errors
end
if Iters==10
save R10.mat SNRs errors
end
if Iters==20
save R20.mat SNRs errors
end
if Iters==50
save R50.mat SNRs errors
end
```

相关文章
|
2月前
|
算法 数据安全/隐私保护
基于PSO粒子群优化算法的256QAM星座图的最优概率整形matlab仿真,对比PSO优化前后整形星座图和误码率
本项目基于MATLAB 2022a仿真256QAM系统,采用概率星座整形(PCS)技术优化星座点分布,结合粒子群优化(PSO)算法搜索最优整形因子v,降低误码率,提升传输性能。核心程序包含完整优化流程。
78 0
|
5月前
|
算法 物联网 数据安全/隐私保护
基于扩频解扩+汉明编译码+交织的lora通信系统matlab性能仿真
本内容展示了一种基于扩频解扩、汉明编译码和交织技术的LoRa通信算法。预览为无水印的完整程序运行效果,使用Matlab2022a开发。LoRa(Long Range)是一种低功耗广域网通信技术,适用于远距离低功耗数据传输。核心程序含详细中文注释与操作视频,涵盖抗干扰、错误检测纠正及突发错误对抗等关键技术,提升系统可靠性与稳定性。
|
4月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
78 10
|
4月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
84 1
|
10月前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
219 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
9月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
131 20
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
398 8
|
算法
m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法,优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码,而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程,根据误码率评估性能并更新解码参数。最终,展示了迭代次数与优化过程的关系,并绘制了SNR与误码率曲线。
138 2
|
算法
m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了Offset Min-Sum (OMS)译码算法与粒子群优化(PSO)结合,以优化偏移参数,提升LDPC码解码性能。PSO通过迭代寻找最小化误码率(BER)的最佳偏移量。核心程序运用PSO进行参数更新和适应度函数(BER)评估,最终在不同信噪比下展示OMS解码性能,并保存结果。
258 0
|
10天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)