GEE机器学习——混淆矩阵Classifier.confusionMatrix()和errorMatrix()和exlain()的用法(js和python代码)

简介: GEE机器学习——混淆矩阵Classifier.confusionMatrix()和errorMatrix()和exlain()的用法(js和python代码)

混淆矩阵

根据训练数据计算分类器的 2D 混淆矩阵(即:重新代入误差)。矩阵的轴 0 对应于输入类,轴 1 对应于输出类。行和列从类 0 开始,并按顺序增加直至最大类值,因此如果输入类不是基于 0 或顺序的,某些行或列可能为空。

混淆矩阵是一种用于衡量分类模型性能的工具。它以表格形式展示了模型在不同类别上的预测结果与真实标签之间的对应关系。混淆矩阵的行表示真实标签,列表示预测结果。通过对角线上的元素,我们可以看到模型在每个类别上的正确预测数量,而其他非对角线上的元素则表示模型的误判情况。混淆矩阵可以帮助我们分析模型在不同类别上的性能表现,进而评估其分类准确度、召回率、精确率等指标。

混淆矩阵是用于评估分类模型的指标,它将实际类别和预测类别的结果汇总到一个矩阵中,用于衡量分类模型的准确性和误差。混淆矩阵主要包括四种可能的情况,即真正类(True Positive, TP)、假正类(False Positive, FP)、真负类(True Negative, TN)、假负类(False Negative, FN)。其中:

  • TP:真正类,表示实际为正样本,模型预测也为正样本的数量。
  • FP:假正类,表示实际为负样本,模型预测为正样本的数量。
  • TN:真负类,表示实际为负样本,模型预测也为负样本的数量。
  • FN:假负类,表示实际为正样本,模型预测为负样本的数量。

混淆矩阵的示例:

- 预测为正类 预测为负类
实际为正类 TP(真正类) FN(假负类)
实际为负类 FP(假正类) TN(真负类)

函数

ee.ConfusionMatrix(array, order)

Creates a confusion matrix. Axis 0 (the rows) of the matrix correspond to the actual values, and Axis 1 (the columns) to the predicted values.

Arguments:

array (Object):

A square, 2D array of integers, representing the confusion matrix.

order (List, default: null):

The row and column size and order, for non-contiguous or non-zero based matrices.

Returns: ConfusionMatrix

errorMatrix(actual, predicted, order)

Computes a 2D error matrix for a collection by comparing two columns of a collection: one containing the actual values, and one containing predicted values.The values are expected to be small contiguous integers, starting from 0. Axis 0 (the rows) of the matrix correspond to the actual values, and Axis 1 (the columns) to the predicted values.

Arguments:

this:collection (Featur

目录
打赏
0
0
0
0
213
分享
相关文章
|
15天前
|
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
530 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
74 6
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
77 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
|
3月前
|
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
97 5
Python高性能编程:五种核心优化技术的原理与Python代码
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
柯里化是一种强大的函数式编程技术,它通过将函数分解为单参数形式,实现了灵活性与可复用性的统一。无论是参数复用、延迟执行,还是函数组合,柯里化都为现代编程提供了极大的便利。 从 Redux 的选择器优化到复杂的数据流处理,再到深度嵌套的函数优化,柯里化在实际开发中展现出了非凡的价值。如果你希望编写更简洁、更优雅的代码,柯里化无疑是一个值得深入学习和实践的工具。从简单的实现到复杂的应用,希望这篇博客能为你揭开柯里化的奥秘,助力你的开发之旅! 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一
|
4月前
|
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
95 33
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
69 10

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等