GEE机器学习——混淆矩阵Classifier.confusionMatrix()和errorMatrix()和exlain()的用法(js和python代码)

简介: GEE机器学习——混淆矩阵Classifier.confusionMatrix()和errorMatrix()和exlain()的用法(js和python代码)

混淆矩阵

根据训练数据计算分类器的 2D 混淆矩阵(即:重新代入误差)。矩阵的轴 0 对应于输入类,轴 1 对应于输出类。行和列从类 0 开始,并按顺序增加直至最大类值,因此如果输入类不是基于 0 或顺序的,某些行或列可能为空。

混淆矩阵是一种用于衡量分类模型性能的工具。它以表格形式展示了模型在不同类别上的预测结果与真实标签之间的对应关系。混淆矩阵的行表示真实标签,列表示预测结果。通过对角线上的元素,我们可以看到模型在每个类别上的正确预测数量,而其他非对角线上的元素则表示模型的误判情况。混淆矩阵可以帮助我们分析模型在不同类别上的性能表现,进而评估其分类准确度、召回率、精确率等指标。

混淆矩阵是用于评估分类模型的指标,它将实际类别和预测类别的结果汇总到一个矩阵中,用于衡量分类模型的准确性和误差。混淆矩阵主要包括四种可能的情况,即真正类(True Positive, TP)、假正类(False Positive, FP)、真负类(True Negative, TN)、假负类(False Negative, FN)。其中:

  • TP:真正类,表示实际为正样本,模型预测也为正样本的数量。
  • FP:假正类,表示实际为负样本,模型预测为正样本的数量。
  • TN:真负类,表示实际为负样本,模型预测也为负样本的数量。
  • FN:假负类,表示实际为正样本,模型预测为负样本的数量。

混淆矩阵的示例:

- 预测为正类 预测为负类
实际为正类 TP(真正类) FN(假负类)
实际为负类 FP(假正类) TN(真负类)

函数

ee.ConfusionMatrix(array, order)

Creates a confusion matrix. Axis 0 (the rows) of the matrix correspond to the actual values, and Axis 1 (the columns) to the predicted values.

Arguments:

array (Object):

A square, 2D array of integers, representing the confusion matrix.

order (List, default: null):

The row and column size and order, for non-contiguous or non-zero based matrices.

Returns: ConfusionMatrix

errorMatrix(actual, predicted, order)

Computes a 2D error matrix for a collection by comparing two columns of a collection: one containing the actual values, and one containing predicted values.The values are expected to be small contiguous integers, starting from 0. Axis 0 (the rows) of the matrix correspond to the actual values, and Axis 1 (the columns) to the predicted values.

Arguments:

this:collection (Featur

相关文章
|
2月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
55 6
|
14天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
49 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
73 33
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
50 10
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
99 8
|
2月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
2月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
72 6
|
5月前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
3月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
84 2
|
4月前
|
大数据 Python
Python 高级编程:深入探索高级代码实践
本文深入探讨了Python的四大高级特性:装饰器、生成器、上下文管理器及并发与并行编程。通过装饰器,我们能够在不改动原函数的基础上增添功能;生成器允许按需生成值,优化处理大数据;上下文管理器确保资源被妥善管理和释放;多线程等技术则助力高效完成并发任务。本文通过具体代码实例详细解析这些特性的应用方法,帮助读者提升Python编程水平。
185 5

热门文章

最新文章