MySQL - 深入理解 MySQL 的 MVCC 及实现原理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL - 深入理解 MySQL 的 MVCC 及实现原理


1. 概要

MVCC 是 Copy On Write 的思想,MVCC 在无锁的情况下除了支持读和读并行,还支持读和写并行,写和读并行,但为了保证数据的一致性,写和写是无法并行的

在事务1开始写操作的时候会 copy 一个记录的副本,其他事务读操作会读取这个记录副本,因此不会影响其他事务对此记录的读取,实现写和读并行。

MVCC 在 MySQL InnoDB 中的实现主要是为了提高数据库的并发性能,用更好的方式去处理读-写冲突,做到即使有读写冲突时,也能做到不加锁,非阻塞并发读

1.1 什么是 MVCC

MVCC,全称 Multi-Version Concurrency Control ,即多版本并发控制。MVCC 是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问,在编程语言中实现事务内存。 MVCC -
@百度百科

如何生成的多版本?每次事务修改操作之前,都会在 undo_log 中记录修改之前的数据状态和事务号,该备份记录可以用于其他事务的读取,也可以进行必要时的数据回滚。

1.2 当前读和快照读

在学习 MVCC 多版本并发控制之前,我们必须先了解一下,什么是 MySQL InnoDB 下的当前读快照读?

1.2.1 当前读

像 select lock in share mode (共享锁), select for update; update; insert; delete (排他锁) 这些操作都是一种当前读,为什么叫当前读?就是它读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。

1.2.2 快照读

不加锁的 select 操作就是快照读,即不加锁的非阻塞读,降低数据库的开销。

快照读的前提是隔离级别不是串行级别,串行级别下的快照读会退化成当前读。之所以出现快照读的情况,是基于提高并发性能的考虑,快照读的实现是基于多版本并发控制(MVCC)。串行化的 SQL 都是排队执行的,不存在并发,所以就会变成当前读。

我们可以认为 MVCC 是行锁的一个变种,但 MVCC 在很多情况下它避免了加锁,降低了开销,既然是基于多版本的,所以快照读不一定读到的就是最新版本的记录,而是可能为之前的历史版本

1.3 当前读,快照读和MVCC的关系

MVCC 多版本并发控制是 「维持一个数据的多个版本,使得读写操作没有冲突」 的概念,只是一个抽象概念,并非实现;

因为 MVCC 只是一个抽象概念,要实现这么一个概念,MySQL 就需要提供具体的功能去实现它,「快照读就是 MySQL 实现 MVCC 理想模型的其中一个非阻塞读功能」。而相对而言,当前读就是悲观锁的具体功能实现;

要说的再细致一些,快照读本身也是一个抽象概念,再深入研究。MVCC 模型在 MySQL 中的具体实现则是由 3 个隐式字段,undo 日志 ,Read View 等去完成的,具体可以看下面的 MVCC 实现原理。

1.4 MVCC 能解决什么问题,好处是?

  1. 数据库并发场景有三种,分别为:
  • 读-读:不存在任何问题,也不需要并发控制
  • 读-写:有线程安全问题,可能会造成事务隔离性问题,可能遇到脏读,幻读,不可重复读
  • 写-写:有线程安全问题,可能会存在更新丢失问题,比如第一类更新丢失(回滚丢失,Lost update),第二类更新丢失(覆盖丢失/两次更新问题,Second lost update)
  1. MVCC 带来的好处是?

多版本并发控制(MVCC)是一种用来解决读-写冲突无锁并发控制,也就是为事务分配单向增长的时间戳,为每个修改保存一个版本,版本与事务时间戳关联,读操作只读该事务开始前的数据库的快照。 所以 MVCC 可以为数据库解决以下问题

  • 在并发读写数据库时,可以做到在读操作时不用阻塞写操作,写操作也不用阻塞读操作,提高了数据库并发读写的性能
  • 同时还可以解决脏读,幻读,不可重复读等事务隔离问题,但不能解决更新丢失问题
  1. 小结一下咯

简而言之,MVCC 就是因为大佬们,不满意只让数据库采用悲观锁这样性能不佳的形式去解决读-写冲突问题,而提出的解决方案,所以在数据库中,因为有了 MVCC,所以我们可以形成两个组合:

  • MVCC + 悲观锁
    MVCC解决读写冲突,悲观锁解决写写冲突
  • MVCC + 乐观锁
    MVCC 解决读写冲突,乐观锁解决写写冲突

这种组合的方式就可以最大程度的提高数据库并发性能,并解决读写冲突,和写写冲突导致的问题

2. MVCC实现原理

MVCC 的目的就是多版本并发控制,在数据库中的实现,就是为了解决读写冲突,它的实现原理主要是依赖记录中的 3个隐式字段undo日志Read View 来实现的。所以我们先来看看这个三个 point 的概念

2.1 隐式字段

每行记录除了我们自定义的字段外,还有数据库隐式定义的 DB_TRX_ID, DB_ROLL_PTR, DB_ROW_ID 等字段:

  • DB_TRX_ID
    6 byte,最近修改(修改/插入)事务 ID:记录创建这条记录/最后一次修改该记录的事务 ID
  • DB_ROLL_PTR
    7 byte,回滚指针,指向这条记录的上一个版本(存储于 rollback segment 里)
  • DB_ROW_ID
    6 byte,隐含的自增 ID(隐藏主键),如果数据表没有主键,InnoDB 会自动以DB_ROW_ID产生一个聚簇索引
  • 实际还有一个删除 flag 隐藏字段, 既记录被更新或删除并不代表真的删除,而是删除 flag 变了

如上图,DB_ROW_ID 是数据库默认为该行记录生成的唯一隐式主键,DB_TRX_ID 是当前操作该记录的事务 ID ,而 DB_ROLL_PTR 是一个回滚指针,用于配合 undo日志,指向上一个旧版本


2.2 undo log

2.2.1 undo log

undo log 主要分为两种:

  • insert undo log

代表事务在 insert 新记录时产生的 undo log, 只在事务回滚时需要,并且在事务提交后可以被立即丢弃

  • update undo log

事务在进行 updatedelete 时产生的 undo log ; 不仅在事务回滚时需要,在快照读时也需要;所以不能随便删除,只有在快速读或事务回滚不涉及该日志时,对应的日志才会被 purge 线程统一清除

purge:

  • 从前面的分析可以看出,为了实现 InnoDB 的 MVCC 机制,更新或者删除操作都只是设置一下老记录的 deleted_bit ,并不真正将过时的记录删除。
  • 为了节省磁盘空间,InnoDB 有专门的 purge 线程来清理 deleted_bit 为 true 的记录。为了不影响 MVCC 的正常工作,purge 线程自己也维护了一个read view(这个 read view 相当于系统中最老活跃事务的 read view );如果某个记录的 deleted_bit 为 true ,并且 DB_TRX_ID 相对于 purge 线程的 read view 可见,那么这条记录一定是可以被安全清除的。

2.2.2 版本链

对 MVCC 有帮助的实质是 update undo logundo log 实际上就是存在 rollback segment 中旧记录链,它的执行流程如下:

一、 比如一个有个事务插入 persion 表插入了一条新记录,记录如下,name 为 Jerry , age 为 24 岁,隐式主键是 1,事务 ID回滚指针,我们假设为 NULL

二、 现在来了一个事务 1对该记录的 name 做出了修改,改为 Tom

  • 事务 1修改该行(记录)数据时,数据库会先对该行加排他锁
  • 然后把该行数据拷贝到 undo log 中,作为旧记录,既在 undo log 中有当前行的拷贝副本
  • 拷贝完毕后,修改该行name为Tom,并且修改隐藏字段的事务 ID 为当前事务 1的 ID, 我们默认从 1 开始,之后递增,回滚指针指向拷贝到 undo log 的副本记录,既表示我的上一个版本就是它
  • 事务提交后,释放锁

三、 又来了个事务 2修改person 表的同一个记录,将age修改为 30 岁

  • 事务2修改该行数据时,数据库也先为该行加锁
  • 然后把该行数据拷贝到 undo log 中,作为旧记录,发现该行记录已经有 undo log 了,那么最新的旧数据作为链表的表头,插在该行记录的 undo log 最前面
  • 修改该行 age 为 30 岁,并且修改隐藏字段的事务 ID 为当前事务 2的 ID, 那就是 2 ,回滚指针指向刚刚拷贝到 undo log 的副本记录
  • 事务提交,释放锁

从上面,我们就可以看出,不同事务或者相同事务的对同一记录的修改,会导致该记录的undo log成为一条记录版本线性表,既链表,undo log 的链首就是最新的旧记录,链尾就是最早的旧记录(当然就像之前说的该 undo log 的节点可能是会 purge 线程清除掉,向图中的第一条 insert undo log,其实在事务提交之后可能就被删除丢失了,不过这里为了演示,所以还放在这里


2.3 Read View 读视图

什么是 Read View?

什么是 Read View,说白了 Read View 就是事务进行快照读操作的时候生产的读视图 (Read View),在该事务执行的快照读的那一刻,会生成数据库系统当前的一个快照,记录并维护系统当前活跃事务的 ID (当每个事务开启时,都会被分配一个 ID , 这个 ID 是递增的,所以最新的事务,ID 值越大)

所以我们知道 Read View 主要是用来做可见性判断的, 即当我们某个事务执行快照读的时候,对该记录创建一个 Read View 读视图,把它比作条件用来判断当前事务能够看到哪个版本的数据,既可能是当前最新的数据,也有可能是该行记录的undo log里面的某个版本的数据。

Read View遵循一个可见性算法,主要是将要被修改的数据的最新记录中的 DB_TRX_ID(即当前事务 ID )取出来,与系统当前其他活跃事务的 ID 去对比(由 Read View 维护),如果 DB_TRX_ID 跟 Read View 的属性做了某些比较,不符合可见性,那就通过 DB_ROLL_PTR 回滚指针去取出 Undo Log 中的 DB_TRX_ID 再比较,即遍历链表的 DB_TRX_ID(从链首到链尾,即从最近的一次修改查起),直到找到满足特定条件的 DB_TRX_ID , 那么这个 DB_TRX_ID 所在的旧记录就是当前事务能看见的最新老版本

那么这个判断条件是什么呢?

我们这里盗窃@呵呵一笑百媚生一张源码图,如上,它是一段 MySQL 判断可见性的一段源码,即 changes_visible 方法(不完全哈,但能看出大致逻辑),该方法展示了我们拿 DB_TRX_ID 去跟 Read View 某些属性进行怎么样的比较

在展示之前,我先简化一下 Read View,我们可以把 Read View 简单的理解成有三个全局属性

  • trx_list(名称我随意取的)
  • 一个数值列表
  • 用于维护 Read View 生成时刻系统 正活跃的事务 ID 列表
  • up_limit_id
  • lower water remark
  • 是 trx_list 列表中事务 ID 最小的 ID
  • low_limit_id
  • hight water mark
  • ReadView 生成时刻系统尚未分配的下一个事务 ID ,也就是 目前已出现过的事务 ID 的最大值 + 1
  • 为什么是 low_limit ? 因为它也是系统此刻可分配的事务 ID 的最小值
  • 首先比较 DB_TRX_ID < up_limit_id , 如果小于,则当前事务能看到 DB_TRX_ID 所在的记录,如果大于等于进入下一个判断
  • 接下来判断 DB_TRX_ID >= low_limit_id , 如果大于等于则代表 DB_TRX_ID 所在的记录在 Read View 生成后才出现的,那对当前事务肯定不可见,如果小于则进入下一个判断
  • 判断 DB_TRX_ID 是否在活跃事务之中,trx_list.contains (DB_TRX_ID),如果在,则代表我 Read View 生成时刻,你这个事务还在活跃,还没有 Commit,你修改的数据,我当前事务也是看不见的;如果不在,则说明,你这个事务在 Read View 生成之前就已经 Commit 了,你修改的结果,我当前事务是能看见的

2.4 整体流程

我们在了解了 隐式字段undo log, 以及 Read View 的概念之后,就可以来看看 MVCC 实现的整体流程是怎么样了

整体的流程是怎么样的呢?我们可以模拟一下

  • 事务 2对某行数据执行了快照读,数据库为该行数据生成一个Read View读视图,假设当前事务 ID 为 2,此时还有事务1事务3在活跃中,事务 4事务 2快照读前一刻提交更新了,所以 Read View 记录了系统当前活跃事务 1,3 的 ID,维护在一个列表上,假设我们称为trx_list
事务 1 事务 2 事务 3 事务 4
事务开始 事务开始 事务开始 事务开始
修改且已提交
进行中 快照读 进行中
  • Read View 不仅仅会通过一个列表 trx_list 来维护事务 2执行快照读那刻系统正活跃的事务 ID 列表,还会有两个属性 up_limit_idtrx_list 列表中事务 ID 最小的 ID ),low_limit_id ( 快照读时刻系统尚未分配的下一个事务 ID ,也就是目前已出现过的事务ID的最大值 + 1 资料传送门 | 呵呵一笑百媚生的回答 ) 。所以在这里例子中 up_limit_id 就是1,low_limit_id 就是 4 + 1 = 5,trx_list 集合的值是 1, 3,Read View 如下图

  • 我们的例子中,只有事务 4 修改过该行记录,并在事务 2 执行快照读前,就提交了事务,所以当前该行当前数据的 undo log 如下图所示;我们的事务 2 在快照读该行记录的时候,就会拿该行记录的 DB_TRX_ID 去跟 up_limit_id , low_limit_id活跃事务 ID 列表( trx_list )进行比较,判断当前事务 2能看到该记录的版本是哪个。

  • 所以先拿该记录 DB_TRX_ID 字段记录的事务 ID 4 去跟 Read Viewup_limit_id 比较,看 4 是否小于 up_limit_id( 1 ),所以不符合条件,继续判断 4 是否大于等于 low_limit_id( 5 ),也不符合条件,最后判断 4 是否处于 trx_list 中的活跃事务, 最后发现事务 ID 为 4 的事务不在当前活跃事务列表中, 符合可见性条件,所以事务 4修改后提交的最新结果对事务 2 快照读时是可见的,所以事务 2 能读到的最新数据记录是事务4所提交的版本,而事务4提交的版本也是全局角度上最新的版本

  • 也正是 Read View 生成时机的不同,从而造成 RC , RR 级别下快照读的结果的不同

3. MVCC 相关问题

3.1 RR 是如何在 RC 级的基础上解决不可重复读的?

当前读和快照读在 RR 级别下的区别:

表1:

事务A 事务B
开启事务 开启事务
快照读(无影响)查询金额为500 快照读查询金额为500
更新金额为400
提交事务
select 快照读金额为500
select lock in share mode当前读金额为400

在上表的顺序下,事务 B 的在事务 A 提交修改后的快照读是旧版本数据,而当前读是实时新数据 400

表2:

事务A 事务B
开启事务 开启事务
快照读(无影响)查询金额为500
更新金额为400
提交事务
select 快照读金额为400
select lock in share mode当前读金额为400

而在表 2这里的顺序中,事务 B 在事务 A 提交后的快照读和当前读都是实时的新数据 400,这是为什么呢?

  • 这里与上表的唯一区别仅仅是表 1的事务 B 在事务 A 修改金额前快照读过一次金额数据,而表 2的事务B在事务A修改金额前没有进行过快照读。

所以我们知道事务中快照读的结果是非常依赖该事务首次出现快照读的地方,即某个事务中首次出现快照读的地方非常关键,它有决定该事务后续快照读结果的能力

我们这里测试的是更新,同时删除更新也是一样的,如果事务B的快照读是在事务A操作之后进行的,事务B的快照读也是能读取到最新的数据的

3.2 RC , RR 级别下的 InnoDB 快照读有什么不同?

正是 Read View 生成时机的不同,从而造成 RC , RR 级别下快照读的结果的不同

  • 在 RR 级别下的某个事务的对某条记录的第一次快照读会创建一个快照及 Read View, 将当前系统活跃的其他事务记录起来,此后在调用快照读的时候,还是使用的是同一个 Read View,所以只要当前事务在其他事务提交更新之前使用过快照读,那么之后的快照读使用的都是同一个 Read View,所以对之后的修改不可见;
  • 即 RR 级别下,快照读生成 Read View 时,Read View 会记录此时所有其他活动事务的快照,这些事务的修改对于当前事务都是不可见的。而早于Read View创建的事务所做的修改均是可见
  • 而在 RC 级别下的,事务中,每次快照读都会新生成一个快照和 Read View , 这就是我们在 RC 级别下的事务中可以看到别的事务提交的更新的原因

总之在 RC 隔离级别下,是每个快照读都会生成并获取最新的 Read View;而在 RR 隔离级别下,则是同一个事务中的第一个快照读才会创建 Read View, 之后的快照读获取的都是同一个 Read View。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
自然语言处理 搜索推荐 关系型数据库
MySQL实现文档全文搜索,分词匹配多段落重排展示,知识库搜索原理分享
本文介绍了在文档管理系统中实现高效全文搜索的方案。为解决原有ES搜索引擎私有化部署复杂、运维成本高的问题,我们转而使用MySQL实现搜索功能。通过对用户输入预处理、数据库模糊匹配、结果分段与关键字标红等步骤,实现了精准且高效的搜索效果。目前方案适用于中小企业,未来将根据需求优化并可能重新引入专业搜索引擎以提升性能。
119 5
|
2月前
|
关系型数据库 MySQL 数据库
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
随着数据量增长和业务扩展,单个数据库难以满足需求,需调整为集群模式以实现负载均衡和读写分离。MySQL主从复制是常见的高可用架构,通过binlog日志同步数据,确保主从数据一致性。本文详细介绍MySQL主从复制原理及配置步骤,包括一主二从集群的搭建过程,帮助读者实现稳定可靠的数据库高可用架构。
180 9
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
|
2月前
|
SQL 存储 关系型数据库
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
141 18
MySQL原理简介—9.MySQL索引原理
|
2月前
|
存储 关系型数据库 MySQL
MySQL底层概述—6.索引原理
本文详细回顾了:索引原理、二叉查找树、平衡二叉树(AVL树)、红黑树、B-Tree、B+Tree、Hash索引、聚簇索引与非聚簇索引。
135 11
MySQL底层概述—6.索引原理
|
2月前
|
SQL 关系型数据库 MySQL
京东面试:MySQL MVCC是如何实现的?如何通过MVCC实现读已提交、可重复读隔离级别的?
1.请解释什么是MVCC,它在数据库中的作用是什么? 2.在MySQL中,MVCC是如何实现的?请简述其工作原理。 3.MVCC是如何解决读-写和写-写冲突的? 4.在并发环境中,当多个事务同时读取同一行数据时,MVCC是如何保证每个事务看到的数据版本是一致的? 5.MVCC如何帮助提高数据库的并发性能?
京东面试:MySQL MVCC是如何实现的?如何通过MVCC实现读已提交、可重复读隔离级别的?
|
2月前
|
SQL 监控 关系型数据库
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
|
2月前
|
SQL 缓存 关系型数据库
MySQL原理简介—7.redo日志的底层原理
本文介绍了MySQL中redo日志和undo日志的主要内容: 1. redo日志的意义:确保事务提交后数据不丢失,通过记录修改操作并在系统宕机后重做日志恢复数据。 2. redo日志文件构成:记录表空间号、数据页号、偏移量及修改内容。 3. redo日志写入机制:redo日志先写入Redo Log Buffer,再批量刷入磁盘文件,减少随机写以提高性能。 4. Redo Log Buffer解析:描述Redo Log Buffer的内存结构及刷盘时机,如事务提交、Buffer过半或后台线程定时刷新。 5. undo日志原理:用于事务回滚,记录插入、删除和更新前的数据状态,确保事务可完整回滚。
185 22
|
2月前
|
SQL 缓存 关系型数据库
MySQL原理简介—8.MySQL并发事务处理
这段内容深入探讨了SQL语句执行原理、事务并发问题、MySQL事务隔离级别及其实现机制、锁机制以及数据库性能优化等多个方面。
113 13
|
2月前
|
SQL 关系型数据库 MySQL
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。
|
2月前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。
下一篇
oss创建bucket