[MySQL] SQL优化之性能分析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
日志服务 SLS,月写入数据量 50GB 1个月
简介: [MySQL] SQL优化之性能分析

🌈键盘敲烂,年薪30万🌈



 

一、索引优化

1、索引是什么:

通过一些约束,快速查询到相应字段的一种数据结构

索引在sql优化中占有非常重要的地位,因为索引与查询挂钩,查询是我们最常做的一个操作。

2、索引的数据结构

Hash索引:查询快,但是不支持范围查询,只能精确定位某个数据。

B+树索引:查询较快,支持范围查询,这也是InnoDB存储引擎中默认的索引结构


B+树结构:

多路平衡树,每个节点存放key和指针,指针数量等于key数量+1

插播小知识:

B+树与B树,有什么区别,为什么不用二叉树???

B+树没个非叶子结点只存放指针,可以最大限度的降低树的高度,提高查询效率。

所有数据存放在叶子节点,查询稳定而二叉树层次会更深,也会有退化为链表的风险

3、索引种类:

聚簇索引:叶子节点中主键下面挂的是每一行的数据

二级索引:叶子节点中索引值下面挂的是主键id

4、sql分析(回表查询)

现有user表,id为主键,name有唯一约束和唯一索引结构,分析下面sql语句。

-- select * from user where id = 1;

-- select * from user where name = 'zhang';

分析:

①where 后面是id,从主键索引里面查找,找到了id为1的,再看前面select 后面是 * 主键下面包含了这些字段信息,直接返回。

②where 后面是name,并且有唯一索引结构,从该索引查找,找到了姓名为zhang的,同样select * 也是查询所有字段,但是此时name下面只有主键id的值,他要根据id再次查询主键索引,性能低

二、定位慢查询语句

1、慢查询日志

  • mysql带有慢查询日志,该日志会记录超过指定时间的sql语句,

注意:

慢查询日志默认为不开启,开启之后默认指定时间为10s。

可通过修改配置文件来设置这两参数。

  • 修改mysql的配置文件

缺点:

有些sql在规定的时间之内,但是查询花了9.9秒,并且性能很低,慢查询日志无法记录这样的sql我们也就无法优化.

2、profile详情

  • show profiles 查看sql语句的执行时间

  • show profile for query query_id; 查看指定语句的执行时间

3、explain执行计划(重点)

  • explain执行计划:他记录了sql查询的一些详细信息

例如:查询部门和员工信息,

控制台返回这么一张表,我们重点关注这5个字段。

type:

  • 表示访问表的方式,是性能分析中重要的一个指标。常见的取值有:
  • ALL:全表扫描。
  • index:通过索引扫描。
  • range:通过索引范围扫描。
  • ref:非唯一性索引扫描。
  • eq_ref:唯一性索引扫描。
  • const:单表中最多有一个匹配行的情况。

反应查询效率 从高到底分别是NULL->system->const->eq_ref->ref->range->index->all

all性能最差,也就是它是全表扫描,没有使用索引,NULL 只有像select 'A' 这样的没有查表才会这样,所以开发中我们尽量优化到system 或者const或者ref级别。

possible_keys:

  • 可能使用的索引,但不一定用到

key:

  • 使用的索引

key_len:

  • 使用索引的长度(字节为单位)

Extra:

  • 包含有关查询的额外信息,可能包括:
  • Using index:表示查询使用了覆盖索引。
  • Using where:表示 MySQL 会在存储引擎层使用 WHERE 条件过滤行。
  • Using temporary:表示查询需要创建临时表。
  • Using filesort:表示 MySQL 会对结果使用文件排序。

4、查看执行频次

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3月前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
18天前
|
SQL 关系型数据库 MySQL
【MySQL】SQL分析的几种方法
以上就是SQL分析的几种方法。需要注意的是,这些方法并不是孤立的,而是相互关联的。在实际的SQL分析中,我们通常需要结合使用这些方法,才能找出最佳的优化策略。同时,SQL分析也需要对数据库管理系统,数据,业务需求有深入的理解,这需要时间和经验的积累。
40 12
|
26天前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
26天前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
2月前
|
SQL 关系型数据库 MySQL
如何优化SQL查询以提高数据库性能?
这篇文章以生动的比喻介绍了优化SQL查询的重要性及方法。它首先将未优化的SQL查询比作在自助餐厅贪多嚼不烂的行为,强调了只获取必要数据的必要性。接着,文章详细讲解了四种优化策略:**精简选择**(避免使用`SELECT *`)、**专业筛选**(利用`WHERE`缩小范围)、**高效联接**(索引和限制数据量)以及**使用索引**(加速搜索)。此外,还探讨了如何避免N+1查询问题、使用分页限制结果、理解执行计划以及定期维护数据库健康。通过这些技巧,可以显著提升数据库性能,让查询更高效流畅。
|
2月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】如何将mysql含有group by的SQL转换成崖山支持的SQL
本文探讨了在YashanDB(崖山数据库)中执行某些SQL语句时出现的报错问题,对比了MySQL的成功执行结果。问题源于SQL-92标准对非聚合列的严格限制,要求这些列必须出现在GROUP BY子句中,而SQL:1999及更高版本允许非聚合列直接出现在选择列中。YashanDB和Oracle遵循SQL-92标准,因此会报错。文章提供了两种解决方法:使用聚合函数处理非聚合列,或将GROUP BY与ORDER BY拆分为两层查询。最后总结指出,SQL-92标准更为严谨合理,建议开发者遵循此规范以避免潜在问题。
|
3月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
111 9
|
3月前
|
SQL 存储 缓存
MySQL的架构与SQL语句执行过程
MySQL架构分为Server层和存储引擎层,具有高度灵活性和可扩展性。Server层包括连接器、查询缓存(MySQL 8.0已移除)、分析器、优化器和执行器,负责处理SQL语句;存储引擎层负责数据的存储和读取,常见引擎有InnoDB、MyISAM和Memory。SQL执行过程涉及连接、解析、优化、执行和结果返回等步骤,本文详细讲解了一条SQL语句的完整执行过程。
130 3
|
3月前
|
SQL Oracle 关系型数据库
【YashanDB 知识库】如何将 mysql 含有 group by 的 SQL 转换成崖山支持的 SQL
在崖山数据库中执行某些 SQL 语句时出现报错(YAS-04316 not a single-group group function),而这些语句在 MySQL 中能成功执行。原因是崖山遵循 SQL-92 标准,不允许选择列表中包含未在 GROUP BY 子句中指定的非聚合列,而 MySQL 默认允许这种操作。解决办法包括:使用聚合函数处理非聚合列或拆分查询为两层,先进行 GROUP BY 再排序。总结来说,SQL-92 更严格,确保数据一致性,MySQL 在 5.7 及以上版本也默认遵循此标准。
|
3月前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。

热门文章

最新文章