基于yolov2深度学习网络的打电话行为检测系统matlab仿真

简介: 基于yolov2深度学习网络的打电话行为检测系统matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
打电话行为是一种常见的日常行为,但在某些场合下,如驾驶、会议等,打电话行为可能会带来安全隐患或影响工作效率。因此,研究一种能够实时检测打电话行为的方法具有重要意义。传统的打电话行为检测方法主要基于传感器或图像处理技术,但存在精度低、实时性差等问题。

3.1、YOLOv2网络原理
近年来,深度学习技术在目标检测领域取得了显著进展。其中,YOLO系列算法是一种基于深度学习的实时目标检测算法,具有速度快、精度高等优点。YOLOv2是YOLO系列的第二代算法,相比于第一代算法,在速度和精度上都有所提升。此外,卷积神经网络(CNN)是深度学习中常用的模型之一,具有强大的特征提取能力。因此,本文选择YOLOv2和CNN作为打电话行为检测的基础算法和模型。

  YOLOv2是一种实时目标检测算法,其核心思想是将目标检测任务看作一个回归问题,通过单次前向传播即可完成检测。相比于其他目标检测算法,YOLOv2具有更高的检测速度和较好的准确性。以下是YOLOv2网络的主要原理:

   网络结构:YOLOv2采用Darknet-19作为基础网络,该网络由19个卷积层和5个最大池化层组成,具有较快的运算速度和较低的计算复杂度。

   批量归一化(Batch Normalization):YOLOv2在网络中加入批量归一化层,减少内部协变量的移动,使网络更加稳定,加速收敛。

    其基本结构如下所示:
AI 代码解读

4.png
5.png

   YOLOv2引入了多尺度训练方法,通过在网络输入端随机调整图像大小,提高网络对不同尺度目标的检测能力。
AI 代码解读

3.2、基于YOLOv2的打电话行为检测
本文提出的打电话行为检测方法主要分为两个阶段:训练阶段和检测阶段。在训练阶段,我们使用标注好的数据集对YOLOv2网络进行训练,使其能够识别出打电话行为。在检测阶段,我们使用训练好的YOLOv2网络对输入的视频帧进行检测,识别出其中的打电话行为。

   具体来说,我们的方法包括以下几个步骤:

   数据预处理:对标注好的数据集进行预处理,包括图像增强、归一化等操作,以提高模型的泛化能力。
   网络构建:构建基于YOLOv2的深度学习网络,包括特征提取网络和检测网络两部分。特征提取网络采用卷积神经网络(CNN),用于提取输入图像的特征;检测网络采用YOLOv2算法,用于对提取的特征进行目标检测。
    网络训练:使用标注好的数据集对网络进行训练,优化网络的参数,使其能够识别出打电话行为。在训练过程中,我们采用随机梯度下降(SGD)算法进行优化,并使用交叉验证方法对模型的性能进行评估。
   行为检测:使用训练好的网络对输入的视频帧进行检测,识别出其中的打电话行为。具体来说,我们将视频帧输入到网络中,经过特征提取和目标检测两个步骤后,得到检测结果。如果检测结果中存在打电话行为的类别,则认为该帧中存在打电话行为。
AI 代码解读

4.部分核心程序

```% 加载预训练的 ResNet-50 模型
load Model_resnet50.mat

% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);

options = trainingOptions('sgdm', ...
'MiniBatchSize', 8, ....
'InitialLearnRate',1e-3, ...
'MaxEpochs',100,...
'CheckpointPath', checkpoint_folder, ...
'Shuffle','every-epoch', ...
'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);
save yolov2.mat detector

```

目录
打赏
0
0
1
0
216
分享
相关文章
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
324 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
200 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
271 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
下一篇
oss创建bucket
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等