数据分析案例-BI工程师招聘岗位信息可视化分析

简介: 数据分析案例-BI工程师招聘岗位信息可视化分析

数据集介绍


本次实验数据集来源于智联招聘网中关于BI工程师岗位的招聘信息,共计1800条数据,每条招聘信息包括岗位名称、公司、薪资、城市、工作类型、学历要求、工作经验要求共7个字段。


实验工具


python3.10


jupyter notebook


实验过程


导入数据



查看数据大小


查看数据基本信息


从结果中可以发现在学历要求这一列变量中存在缺失值


数据预处理


首先对原始数据进行缺失值和重复值的处理,由于缺失数据较少,这里统一直接删除即可


处理各特征数据:


jobname岗位名称 :剔除不包含bi的岗位(用None先表示),只保留含有bi的岗位。


salary薪资:将薪资范围中的最低最高值转换为平均薪资,同时由于有少数薪资为“薪资面议”、‘校招’等全都表示为None,后面一并处理。


city城市:将原始数据中的城市+地区的数据转为城市,比如“北京-朝阳区”转化为北京市。


wrokingExp工作经验:将原数据中的无经验改为不限。


从处理后的结果可发现,最后剩余的数据还有1446条。


数据可视化


导入数据可视化用到的第三方包


1.分析BI工程师岗位的评价薪资分布情况


从平均薪资分布情况来看,目前BI工程师岗位在智联招聘网站的平均薪资为13.5K,主要薪水区间大概在12-15K

2.分析BI岗位学历要求


从岗位学历要求来看,BI工程师岗位的要求不高,绝大多数为大专和本科,只有极少数为硕士和博士。


3.分析BI岗位工作经验要求


从结果来看,绝大多数要求为5年以下,其中1-3年最多,其次是3-5年,最后是不限。


4.分析哪种工作类型需求最多


从词云图中我们可以看出BI工程师的工作类型中装修、建筑、土木、市政工程、互联网开发、软件较多,说明BI工程师岗位主要为建筑和互联网两个行业。


5.分析各城市岗位数量分布


图片如果失效无法展出,小伙伴只要按照代码即可自己画出,该图就是在地图上以热力图的形式展示各个城市的岗位数量。


6.分析平均薪资最高的前十名城市


7.分析薪资最高的前十名公司及岗位信息


总结


1.目前BI工程师岗位在智联招聘网站的平均薪资为13.5K,主要薪水区间大概在12-15K。


2.从城市岗位需求数量分布来看,BI工程师需求主要集中在北京、上海、深圳、广州区域;各国内排在前面的分别为深圳(15.63K)、上海(15.62K)、北京(15.52)、杭州(12.07K)、成都(11.69K)、广州(11.19K)。


3.从工作年限的平均薪水和岗位需求数量来看,工作5-10年的资深BI工程师的平均薪水可以达到20K以上,其中大部分的工作需求年限为3-5年,平均薪水为15.12K。


4.从学历方面来看,最低学历需求主要以本科/大专为主,本科和大专学历要求的平均薪资分别为12.36K和13.71K,博士和硕士学历需求很少。


5.一些高薪的招聘企业,最高的可以给到30K~40K的薪酬水平,其中主要是互联网公司为主。


目录
相关文章
|
1天前
|
敏捷开发 存储 SQL
Quick BI × 宜搭:低代码敏捷开发与专业数据分析的完美融合,驱动企业数字化转型新范式
钉钉低代码平台宜搭与瓴羊QuickBI深度融合,提供前端敏捷构建+后端智能决策的解决方案。通过无缝对接的数据收集与分析、一站式数据分析及报表嵌入等功能,实现业务与数据双重赋能。
|
1月前
|
人工智能 自然语言处理 数据可视化
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
随着大模型技术突破,全球企业迎来数据智能革命。Gartner预测,到2027年,中国80%的企业将采用多模型生成式AI策略。然而,数据孤岛与高门槛仍阻碍价值释放。
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
|
12天前
|
SQL 自然语言处理 数据可视化
📊 Quick BI 真实体验评测:小白也能快速上手的数据分析工具!
作为一名软件开发工程师,我体验了阿里云的Quick BI工具。从申请试用账号到上传数据、创建数据集,再到搭建仪表板和使用智能小Q功能,整个过程流畅且简单易用。尤其对非专业数据分析人士来说,拖拽式设计和自然语言问数功能极大降低了操作门槛。虽然在试用入口明显度和复杂语义理解上还有提升空间,但整体体验令人满意。Quick BI让我改变了对数据分析的认知,值得推荐给需要快速制作报表的团队成员。
|
5月前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
154 11
|
1月前
|
数据可视化 数据挖掘 BI
|
26天前
|
数据可视化 数据挖掘 BI
Quick BI 深度体验:数据洞察,触手可及——打造智能零售分析利器
作为一名数据分析师,我深度体验了阿里云Quick BI。这是一款功能强大的全场景BI平台,支持多数据源接入与智能分析,操作简单且智能化程度高。通过上传Excel文件即可快速生成数据集,并利用丰富图表进行可视化分析。其“智能小Q助手”可对话式查询数据、自动生成报表,极大降低分析门槛。尽管新手引导和移动端体验尚有优化空间,但Quick BI无疑是企业实现数据驱动决策的有力工具。强烈推荐给希望提升业务竞争力的企业!
|
1月前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
319 2
|
2月前
|
人工智能 数据可视化 搜索推荐
云市场伙伴动态 | 分析和商业智能平台领导者Tableau
云市场伙伴动态 | 分析和商业智能平台领导者Tableau
|
3月前
|
安全 数据挖掘 BI
欢迎使用Quick BI,开启您的智能数据分析之旅!
欢迎选择Quick BI作为您的数据分析伙伴!本文将为您介绍一个月全功能免费试用教程,帮助您轻松上手。请确保在PC环境下操作。
435 5
|
5月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
206 5

热门文章

最新文章