Python | 机器学习之PCA降维

简介: Python | 机器学习之PCA降维



1. 机器学习之PCA降维概念

1.1 机器学习

传统编程要求开发者明晰规定计算机执行任务的逻辑和条条框框的规则。然而,在机器学习的魔法领域,我们向计算机系统灌输了海量数据,让它在数据的奔流中领悟模式与法则,自主演绎未来,不再需要手把手的指点迷津。

机器学习,犹如三千世界的奇幻之旅,分为监督学习、无监督学习和强化学习等多种类型,各具神奇魅力。监督学习如大师传道授业,算法接收标签的训练数据,探索输入与输出的神秘奥秘,以精准预测未知之境。无监督学习则是数据丛林的探险者,勇闯没有标签的领域,寻找隐藏在数据深处的秘密花园。强化学习则是一场与环境的心灵对话,智能体通过交互掌握决策之术,追求最大化的累积奖赏。

机器学习,如涓涓细流,渗透各行各业。在图像和语音识别、自然语言处理、医疗诊断、金融预测等领域,它在智慧的浪潮中焕发生机,将未来的可能性绘制得更加丰富多彩。

1.2 PCA降维

PCA(Principal Component Analysis),主成分分析,是一种常用的降维技术。其主要目的是通过线性变换,将原始数据投影到一个新的坐标系中,使得数据在新坐标系中的方差尽可能大,从而减少数据的维度。

PCA的工作原理是找到数据中方差最大的方向,将数据映射到这个方向上,形成第一个主成分。然后,在与第一个主成分正交的方向上找到第二大方差的方向,形成第二个主成分,依此类推。通过选择最大方差的前几个主成分,就可以实现对数据维度的降低。

降维的好处在于可以减少数据的冗余性,提高计算效率,去除噪声,同时保留数据中的主要结构和特征。在实际应用中,PCA常被用于处理高维数据,例如图像处理、模式识别和数据压缩等领域。通过选择合适数量的主成分,可以在保持数据信息的同时显著减少数据的维度。

资源获取:关注文末公众号回复  机器学习实验


2. PCA降维

2.1 实验目的

(1)理解和掌握PCA原理;

(2)利用PCA降维,辅助完成一项实战内容。


2.2 实验准备

(1)安装机器学习必要库,如NumPy、Pandas、Scikit-learn等;

(2)配置环境用来运行 Python、Jupyter Notebook和相关库等内容。


2.3 实验原理

矩阵的主成分就是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值就是第一主成分,其次是第二主成分,以此类推。

算法流程:

图4-1

2.4 实验内容

人脸识别步骤

1.利用给定的数据集,执行上述算法,得到投影矩阵W;

2.计算训练集的投影后的矩阵:P=WX;

3.加载一个测试图片T,测试图片投影后的矩阵为:TestT=WT;

4.计算TestT和P中每个样本距离,选出最近的那个即可。

5.做成可视化界面 显示投影前后的两张图片。

具体内容:

使用PCA降维人脸代码如下:

import matplotlib
import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import fetch_olivetti_faces
import matplotlib.pyplot as plt
import cv2
matplotlib.use('TkAgg') # 指定交互式框架为TkAgg
# 加载人脸数据集
faces = fetch_olivetti_faces()
X = faces.data
# 将人脸数据进行PCA降维
pca = PCA(n_components=50)
X_pca = pca.fit_transform(X)
# 将降维后的数据进行逆转换
X_restored = pca.inverse_transform(X_pca)
# 随机选择一张人脸图片
face = X[20].reshape(64, 64)
face_restored = X_restored[20].reshape(64, 64)
# 使用均值滤波器模糊图像
face_blur = cv2.blur(face_restored, (20, 20))
# 显示结果
fig, axs = plt.subplots(1, 3, figsize=(10, 5))
axs[0].imshow(face, cmap='gray')
axs[0].set_title('Original Face')
axs[1].imshow(face_restored, cmap='gray')
axs[1].set_title('Restored Face')
axs[2].imshow(face_blur, cmap='gray')
axs[2].set_title('Blurred Face')
plt.show()

PCA降维后运行结果:

图4-2

源码分析:

我实现加载Olivetti人脸数据集,使用PCA对人脸数据进行降维,并通过逆转换恢复了部分原始数据。然后,选择其中一张人脸图像进行处理,包括模糊处理,并使用Matplotlib库在图形界面中展示了原始人脸图像、恢复的人脸图像和模糊的人脸图像。这样可以直观地比较PCA降维对人脸图像的影响以及图像处理的效果。

1.导入必要的库:

  1. matplotlib:用于图像展示。
  2. numpy:用于数据处理和数组操作。
  3. sklearn.decomposition.PCA:用于进行主成分分析(PCA)降维。
  4. sklearn.datasets.fetch_olivetti_faces:用于获取Olivetti人脸数据集。
  5. cv2:OpenCV库,用于图像处理。

2.设置交互式框架:

  1. matplotlib.use('TkAgg'):指定使用TkAgg作为交互式框架,这是一种用于在图形用户界面中显示图形的后端。

3.加载人脸数据集:

  1. fetch_olivetti_faces():从Olivetti人脸数据集中加载人脸图像数据。
  2. faces.data:获取加载的人脸数据。

4.进行PCA降维:

  1. PCA(n_components=50):创建一个PCA对象,将数据降维到50个主成分。
  2. pca.fit_transform(X):对人脸数据进行PCA降维,返回降维后的数据集X_pca。

5.进行逆转换:

  1. pca.inverse_transform(X_pca):将降维后的数据X_pca进行逆转换,返回重建的人脸数据X_restored。

6.随机选择一张人脸图片:

  1. X[20]:选择人脸数据集中的第21个样本(索引从0开始)。
  2. X[20].reshape(64, 64):将一维的人脸数据转换为64x64的二维图像表示,得到原始人脸图像。

7.使用均值滤波器模糊图像:

  1. cv2.blur(face_restored, (20, 20)):使用20x20的均值滤波器对face_restored进行图像模糊处理,得到模糊的人脸图像face_blur。

8.显示结果:

  1. 创建一个1行3列的子图布局,用于在同一画布上显示原始人脸图像、重建的人脸图像和模糊的人脸图像。
  2. axs[0].imshow(face, cmap='gray'):在第一个子图上显示原始人脸图像,使用灰度颜色映射。
  3. axs[1].imshow(face_restored, cmap='gray'):在第二个子图上显示重建的人脸图像,使用灰度颜色映射。
  4. `axs[2].imshow(face_blur, cmap 'gray')`:在第三个子图上显示模糊的人脸图像,使用灰度颜色映射。
  5. axs[0].set_title('Original Face'):设置第一个子图的标题为"Original Face"。
  6. axs[1].set_title('Restored Face'):设置第二个子图的标题为"Restored Face"。
  7. axs[2].set_title('Blurred Face'):设置第三个子图的标题为"Blurred Face"。
  8. plt.show():显示图像结果。

除了实现上述的基本要求,我额外实现了读取本地的图片识别人脸和调用本地电脑摄像头实时识别人脸。

1. 读取本地的图片识别人脸

代码如下:

# 导入所需要使用的包
import cv2
import paddlehub as hub
from matplotlib import pyplot as plt
# 加载Paddlehub人脸检测模型
face_detector = hub.Module(name="pyramidbox_lite_mobile")
# 使用模型进行图片预测
result = face_detector.face_detection(paths=['./img/1.jpg'],  # 图片路径列表
                                      use_gpu=False,  # 是否使用GPU进行推理
                                      visualization=True,  # 是否可视化结果
                                      output_dir='./output',  # 输出目录路径
                                      confs_threshold=0.5)  # 置信度阈值
# 打印检测结果
print(result)
# 显示可视化图片
output = cv2.imread('./output/555.jpg')  
# 读取可视化结果图片
output = output[:, :, ::-1] 
# 将图片通道顺序由BGR转换为RGB
plt.imshow(output)  
# 显示图片

运行结果:

图4-2 (a)为输入,(b)为输出

2. 调用本地电脑摄像头实时识别人脸

代码如下:

# 导入必要的库
import cv2  
# 导入OpenCV库,用于图像处理和显示
import paddlehub as hub  
# 导入Paddlehub库,用于加载和使用Paddlehub模型
# 加载Paddlehub人脸检测模型
face_detector = hub.Module(name="pyramidbox_lite_mobile") 
# 使用Paddlehub的pyramidbox_lite_mobile模型进行人脸检测
# 调用摄像头,参数为0时,即调用系统默认摄像头,如果有其他的摄像头可以调整参数为1,2等
cap = cv2.VideoCapture(0)  
# 创建一个VideoCapture对象,用于读取摄像头的视频流
while True:
# 从摄像头读取图片
sucess, img = cap.read() 
 # 读取摄像头的视频流,并将每一帧存储为图像
# 从图片中检测人脸位置,默认开启GPU推理,若无GPU环境,请将use_gpu设置为False
result = face_detector.face_detection(images=[img], use_gpu=False)  
# 使用加载的人脸检测模型对图像进行人脸检测
    # 遍历结果并绘制矩形框
    if result[0]['data'] != []:
        for face in result[0]['data']:
            # 将Dict形式的key-value对转换成变量形式
            locals().update(face)  
            # 将人脸检测结果中的每个人脸信息存储为变量
            print('bbox:', [left, top, right, bottom])  
            # 打印人脸边界框的坐标信息
            # 绘制矩形框
            cv2.rectangle(img, tuple([left, top]), tuple([right, bottom]), (255, 0, 0), 2)  
            # 在图像上绘制人脸边界框
    # 显示图像
    cv2.imshow("img", img)  
# 在窗口中显示处理后的图像
    # 保持画面的持续。
    k = cv2.waitKey(1)  
    # 等待用户按键输入,等待时间为1毫秒
    if k == 27:
        # 通过esc键退出摄像
        cv2.destroyAllWindows()  # 关闭所有窗口
        break
# 关闭摄像头
cap.release()  # 释放摄像头资源

运行结果:

图4-3 实时输出结果

2.5 实验心得

通过本次实验,我成功实现了人脸识别的关键步骤,运用机器学习算法进行学习和应用。实验主要包括以下几个步骤:

  1. 利用fetch_olivetti_faces函数加载人脸数据集,将数据存储在变量X中。通过PCA算法将数据进行降维,将维度减少到50。
  2. 进行降维后数据的逆转换,使用PCA.inverse_transform()得到重建后的人脸数据,实现维度还原。
  3. 随机选择一张人脸图片,展示原始、重建以及模糊后的人脸图像。
  4. 利用PaddleHub库加载人脸检测模型,对测试图片进行人脸检测和可视化。
  5. 使用OpenCV和PaddleHub库进行实时人脸检测,并将检测结果嵌入摄像头的视频流中,实现实时人脸识别。

这些步骤涵盖了从数据加载、降维处理到模型应用和实时检测的全面流程。通过详细的代码说明,展现了人脸识别算法的实际应用和实验成果。


致读者

风自火出,家人;君子以言有物而行有恒

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
15天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
44 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
15天前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
68 8
|
12天前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
27 2
|
17天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
20 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
27天前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
26 3
|
17天前
|
机器学习/深度学习 数据采集 算法
机器学习新纪元:用Scikit-learn驾驭Python,精准模型选择全攻略!
在数据爆炸时代,机器学习成为挖掘数据价值的关键技术,而Scikit-learn作为Python中最受欢迎的机器学习库之一,凭借其丰富的算法集、简洁的API和高效性能,引领着机器学习的新纪元。本文通过一个实际案例——识别垃圾邮件,展示了如何使用Scikit-learn进行精准模型选择。从数据预处理、模型训练到交叉验证和性能比较,最后选择最优模型进行部署,详细介绍了每一步的操作方法。通过这个过程,我们不仅可以看到如何利用Scikit-learn的强大功能,还能了解到模型选择与优化的重要性。希望本文能为你的机器学习之旅提供有价值的参考。
21 0
|
26天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
21 0
|
29天前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的基本原理与Python代码实践
【9月更文挑战第6天】本文深入探讨了人工智能领域中的机器学习技术,旨在通过简明的语言和实际的编码示例,为初学者提供一条清晰的学习路径。文章不仅阐述了机器学习的基本概念、主要算法及其应用场景,还通过Python语言展示了如何实现一个简单的线性回归模型。此外,本文还讨论了机器学习面临的挑战和未来发展趋势,以期激发读者对这一前沿技术的兴趣和思考。
|
机器学习/深度学习 算法 数据可视化
吴恩达《Machine Learning》精炼笔记 9:PCA 及其 Python 实现
吴恩达《Machine Learning》精炼笔记 9:PCA 及其 Python 实现
265 0
吴恩达《Machine Learning》精炼笔记 9:PCA 及其 Python 实现
下一篇
无影云桌面