机器学习(七)模型选择

简介: 机器学习(七)模型选择

1.10模型选择

一个模型可能有很多种情况出现,那么我们如何选择最优的模型呢?

1.10.1那条曲线拟合效果是最好的?

观察上述图示:

利用已知的样本点在图示的坐标轴上画出了绿色的曲线,表示源数据的大致分布状况。假设我们使用后面要学习的线性回归去解决样本点拟合问题, 比如用多项式表示线性回归模型:,当n=0时,y=k,就是图一的平行于x轴的直线,此时该直线不能很好的拟合样本数据;当n=1时,y=kx+B,得到图2的一次直线,我们可以注意到无论怎么调整该直线都不能很好的拟合样本数据;上述n=0或1时是模型的欠拟合情况。当n=3时,,得到图3的三次函数拟合曲线,这种情况是能够很好的拟合样本数据;但是,当n=9时,得到图4的拟合曲线。当n取值越高的时候,当前样本的数据能够很好的拟合,但是在新的数据上效果却很差,这时出现了过拟合情况。

通过上述图大家应该能看到,即便我们确定了使用线性回归模型去处理,我们在选择参数的时候也是有很多种情况。如,可以调整不同的k1、k2和k3的值,同时也对应了不同的拟合直线,我们希望可以从这些参数中找到拟合较好的直线,但不能过分的好,因为我们要考虑当新数据来了模型的分类情况。

由此我们引入了模型的“泛化”能力的概念。

1.10.2泛化

机器学习的目标是使学得的模型能很好地适用于“新样本”,而不是仅仅在训练样本上工作的很好;即便对聚类这样的无监督学习任务,我们也希望学得的簇划分能适用于没在训练集中出现的样本。学得模型适用于新样本的能力,称为“泛化”(generalization)能力。具有强泛化能力的模型能很好地适用于整个样本空间。(现实任务中的样本空间的规模通常很大,如20 个属性,每个属性有10个可能取值,则样本空间的规模是1020)。

还有一个泛化的概念:

基础概念】模型具有好的泛化能力指的是:模型不但在训练数据集上表现的效果很好,对于新数据的适应能力也有很好的效果。

当我们讨论一个机器学习模型学习能力和泛化能力的好坏时,我们通常使用过拟合和欠拟合的概念,过拟合和欠拟合也是机器学习算法表现差的两大原因。

基础概念】过拟合overfitting:模型在训练数据上表现良好,在未知数据或者测试集上表现差。

基础概念】欠拟合underfitting:在训练数据和未知数据上表现都很差。

1.10.3欠拟合

图1和图2都是模型欠拟合的情况:即模型在训练集上表现的效果差,没有充分利用数据,预测准确率很低,拟合结果严重不符合预期。

产生的原因:模型过于简单

出现的场景:欠拟合一般出现在机器学习模型刚刚训练的时候,也就是说一开始我们的模型往往是欠拟合也正是因为如此才有了优化的空间,我们通过不断优化调整算法来使得模型的表达能力更强。

解决办法:(1)添加其他特征项:因为特征项不够而导致欠拟合,可以添加其他特征项来很好的解决。

(2)添加多项式特征,如图(3)我们可以在线性模型中通过添加二次或三次项使得模型的泛化能力更强。

(3)减少正则化参数,正则化的目的是用来防止过拟合的,但是现在模型出现了欠拟合,需要减少正则化参数。

1.10.4过拟合

上图是模型过拟合的情况:即模型在训练集上表现的很好,但是在测试集上效果却很差。也就是说,在已知的数据集合中非常好,再添加一些新数据进来效果就会差很多。

产生的原因:可能是模型太过于复杂、数据不纯、训练数据太少等造成。

出现的场景:当模型优化到一定程度,就会出现过拟合的情况。

解决办法:(1)重新清洗数据:导致过拟合一个原因可能是数据不纯导致的,

(2)增大训练的数据量:导致过拟合的另一个原因是训练数据量太小,训练数据占总数据比例太低。

(3)采用正则化方法对参数施加惩罚:导致过拟合的原因可能是模型太过于复杂,我们可以对比较重要的特征增加其权重,而不重要的特征降低其权重的方法。常用的有L1正则和L2正则,我们稍后会提到。

(4)采用dropout方法,即采用随机采样的方法训练模型,常用于神经网络算法中。

注意:模型的过拟合是无法彻底避免的,我们能做的只是缓解,或者说减小其风险,因为机器学习面临的是NP难问题(这列问题不存在有效精确解,必须寻求这类问题的有效近似算法求解),但是有效算法必然是在多项式时间内运行完成的,因此过拟合是不可避免的。在实际的任务中往往通过多种算法的选择,甚至对同一个算法,当使用不同参数配置时,也会产生不同的模型。那么,我们也就面临究竟选择哪一种算法,使用哪一种参数配置?这就是我们在机器学习中的“模型选择(model select)”问题,理想的解决方案当然是对候选模型的泛化误差进行评估,然后选择泛化误差最小的那个模型。我们更详细的模型选择会有专门的专题讲到,如具体的评估方法(交叉验证)、性能度量准则、偏差和方差折中等。

补充:NP难问题

NP是指非确定性多项式(non-deterministic polynomial,缩写NP)。所谓的非确定性是指,可用一定数量的运算去解决多项式时间内可解决的问题。

例如,著名的推销员旅行问题(Travel Saleman Problem or TSP):假设一个推销员需要从香港出发,经过广州,北京,上海,…,等 n 个城市, 最后返回香港。任意两个城市之间都有飞机直达,但票价不等。假设公司只给报销 C 元钱,问是否存在一个行程安排,使得他能遍历所有城市,而且总的路费小于 C?

推销员旅行问题显然是 NP 的。因为如果你任意给出一个行程安排,可以很容易算出旅行总开销。但是,要想知道一条总路费小于 C 的行程是否存在,在最坏情况下,必须检查所有可能的旅行安排! 这将是个天文数字。

迄今为止,这类问题中没有一个找到有效算法。倾向于接受NP完全问题(NP-Complet或NPC)和NP难题(NP-Hard或NPH)不存在有效算法这一猜想,认为这类问题的大型实例不能用精确算法求解,必须寻求这类问题的有效的近似算法

1.10.5奥卡姆剃刀原则

奥卡姆剃刀原则是模型选择的基本而且重要的原则。

模型是越复杂,出现过拟合的几率就越高,因此,我们更喜欢采用较为简单的模型。这种策略与应用就是一直说的奥卡姆剃刀(Occam’s razor)或节俭原则(principe of parsimony)一致。

奥卡姆剃刀:给定两个具有相同泛化误差的模型,较简单的模型较复杂的模型更可取。

目录
相关文章
|
14天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
29 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
18天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
125 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
6天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
43 18
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
3天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
21 4
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
1月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
111 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
57 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
89 8