目录
现在是凌晨12点,记录一下学习,重新复习一下Pytorch......好吧,其实也不算复习,之前也只是简单的了解了一下,仅此而已。但是!现在不一样,需要仔细的去学习!
Let‘s do it !!!
这只是一篇简单的学习笔记,仅此而已!!!
一、张量概述:
一种特殊的数据结构,使用在深度学习的神经网络中,类似数组(多维度)和矩阵。神经网络的输入输出、网格参数都是使用张量来进行描述!
import torch import numpy as np
二、初始化张量:
张量的初始化方式有多种,主要是根据数据来源选择不同的初始化方法:
直接使用Python列表转化为张量:
data = [[1, 2], [3, 4]] x_data = torch.tensor(data)
使用torch库中的函数tensor将一个二维python列表转换为一个二维的张量。
通过Numpy数组(ndarray)转换为张量:
ndarray和张量(tensor)之间是支持相互转换的
np_array = np.array(data) x_np = torch.from_numpy(np_array)
通过已有的张量生成新的张量:
新的张量将会继承原有张量的数据属性(结构和类型),也可以重新指定新的数据属性。
x_ones = torch.ones_like(x_data) # 保留 x_data 的属性 print(f"Ones Tensor: \n {x_ones} \n") x_rand = torch.rand_like(x_data, dtype=torch.float) # 重写 x_data 的数据类型int -> float print(f"Random Tensor: \n {x_rand} \n")
Ones Tensor: tensor([[1, 1], [1, 1]]) Random Tensor: tensor([[0.0381, 0.5780], [0.3963, 0.0840]])
通过指定数据维度生成张量:
使用shape元组指定生成的张量维度,将元组传递给torch函数创建不同的张量:
shape = (2,3,) rand_tensor = torch.rand(shape) ones_tensor = torch.ones(shape) zeros_tensor = torch.zeros(shape) print(f"Random Tensor: \n {rand_tensor} \n") print(f"Ones Tensor: \n {ones_tensor} \n") print(f"Zeros Tensor: \n {zeros_tensor}")
Random Tensor: tensor([[0.0266, 0.0553, 0.9843], [0.0398, 0.8964, 0.3457]]) Ones Tensor: tensor([[1., 1., 1.], [1., 1., 1.]]) Zeros Tensor: tensor([[0., 0., 0.], [0., 0., 0.]])
三、张量属性:
通过张量的不同属性,可以知道张量的维度,张量的数据类型、张量的存储设备(物理设备)
tensor = torch.rand(3,4) print(f"Shape of tensor: {tensor.shape}") print(f"Datatype of tensor: {tensor.dtype}") print(f"Device tensor is stored on: {tensor.device}")
Shape of tensor: torch.Size([3, 4]) # 维数 Datatype of tensor: torch.float32 # 数据类型 Device tensor is stored on: cpu # 存储设备
四、张量的运算:
检查当前运行环境是否支持Pytorch,检查代码:
# 判断当前环境GPU是否可用, 然后将tensor导入GPU内运行 if torch.cuda.is_available(): tensor = tensor.to('cuda')
1.张量的索引和切片:
Python的切片,第一个参数是行操作,第二个参数是列操作。
tensor = torch.ones(4, 4) tensor[:,1] = 0 # 将第1列(从0开始)的数据全部赋值为0 print(tensor)
所有的索引位置都是从0开始:
tensor([[1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]])
2.张量的拼接:
你可以通过torch.cat
方法将一组张量按照指定的维度进行拼接, 也可以参考torch.stack方法。
t1 = torch.cat([tensor, tensor, tensor], dim=1) print(t1)
注意这里的dim参数,这里是指定tensor拼接的维度,维度索引同样是从0开始,0表示第一维,1表示第二维,所以拼接在二维的情况是按照列拼接:
tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.], [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.], [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.], [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])
想知道有几个维度,数出有几层中括号就行,有几层中括号就有几维。而且,随着中括号由外向里走,维度依次增加:从 0 变为 1 变为 2。
3.张量的乘法和矩阵乘法:
简单区分一下乘法和矩阵乘法的区别:
- 乘法:在矩阵上是两个shape相同的矩阵(就是需要满足矩阵的形状一致),对应位置上的元素相乘
- 矩阵乘法:要求矩阵内联的维度一致,即(n,m)x (m,z)
乘法(点乘):
# 逐个元素相乘结果 print(f"tensor.mul(tensor): \n {tensor.mul(tensor)} \n") # 等价写法: print(f"tensor * tensor: \n {tensor * tensor}")
tensor.mul(tensor): tensor([[1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]]) tensor * tensor: tensor([[1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]])
矩阵乘法(叉乘):
print(f"tensor.matmul(tensor.T): \n {tensor.matmul(tensor.T)} \n") # 等价写法: print(f"tensor @ tensor.T: \n {tensor @ tensor.T}")
tensor.matmul(tensor.T): tensor([[3., 3., 3., 3.], [3., 3., 3., 3.], [3., 3., 3., 3.], [3., 3., 3., 3.]]) tensor @ tensor.T: tensor([[3., 3., 3., 3.], [3., 3., 3., 3.], [3., 3., 3., 3.], [3., 3., 3., 3.]])
4.自动赋值运算:
自动赋值运算通常在方法后有 _
作为后缀, 例如: x.copy_(y)
, x.t_()
操作会改变 x
的取值。即将方法调用执行的结果重新赋值给调用方法的变量。
print(tensor, "\n") tensor.add_(5) print(tensor)
tensor([[1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]]) tensor([[6., 5., 6., 6.], [6., 5., 6., 6.], [6., 5., 6., 6.], [6., 5., 6., 6.]])
注意:自动赋值运算虽然可以节省内存, 但在求导时会因为丢失了中间过程而导致一些问题, 所以我们并不鼓励使用它。
五、Tensor和Numpy的相互转换:
张量和ndarray数组在CPU上可以共用一块内存区域,改变其中一个值,另一个也会发生改变。
1.由tensor转换为ndarray:
tensor直接调用numpy方法:
t = torch.ones(5) print(f"t: {t}") n = t.numpy() print(f"n: {n}")
t: tensor([1., 1., 1., 1., 1.]) n: [1. 1. 1. 1. 1.]
此时,如果修改张量tensor的值,那么对应的ndarray中的值也会发生改变,这里只是变量类型的改变,但是变量指向的内存地址是同一个内存空间:
t.add_(1) print(f"t: {t}") print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.]) n: [2. 2. 2. 2. 2.]
2.由Ndarray转换为Tensor:
n = np.ones(5) t = torch.from_numpy(n)
修改Numpy array
数组的值,则张量值也会随之改变。
np.add(n, 1, out=n) print(f"t: {t}") print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64) n: [2. 2. 2. 2. 2.]